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Abstract 

Information extraction from historical maps represents a 
persistent challenge due to inferior graphical quality and large 
data volume in digital map archives, which can hold 
thousands of digitized map sheets. In this paper, we describe 
an approach to extract human settlement symbols in United 
States Geological Survey (USGS) historical topographic maps 
using contemporary building data as the contextual spatial 
layer. The presence of a building in the contemporary layer 
indicates a high probability that the same building can be 
found at that location on the historical map. We describe the 
design of an automatic sampling approach using these 
contemporary data to collect thousands of graphical examples 
for the symbol of interest. These graphical examples are then 
used for robust learning to then carry out feature extraction in 
the entire map. We employ a Convolutional Neural Network 
(LeNet) for the recognition task. Results are promising and 
will guide the next steps in this research to provide an 
unsupervised approach to extracting features from historical 
maps. 

1 Introduction 

Efficient graphics recognition of historical maps is impeded 
to date mainly due to issues of poor graphical quality and 
large data volume, which is a common problem when 
thousands of historical map sheets are scanned and stored in 
map archives. To overcome the need for user intervention and 
manual training in a recognition system, we are developing 
techniques to fully automate the process of extracting 
geographic information from scanned historical cartographic 
documents. The goal of such information extraction efforts is 
to make the data in these documents accessible to geospatial 
tools and thus for spatial-temporal analysis of landscape 
patterns and their changes [1]. One approach to improving 
recognition performance is to incorporate contextual 
geographic layers to make use of the fact that map series 
represent evolutionary documents that change in cumulative 
ways [2]. The concept of geographic context implies the 
effective use of ancillary geographic information containing 
the feature of interest such as gazetteers or other map series 

for guided graphics sampling in training a recognition model 
[3,4,5]. For example, it can be assumed that roads in a 
historical map spatially overlap or are in proximity to road 
segments in a contemporary geographic dataset. Thus, 
sampling along the contemporary road segments enables a 
system to collect graphic examples of road symbology in 
historical maps. 
 In this paper, we present an approach to extract building 
footprints and urban areas from historical sheets of the USGS 
topographic map series. The extraction of building footprints 
is particularly challenging due to their small areal extent, 
variations in shape, size, and spatial context. Furthermore, 
contextual geographic layers representing building locations 
from different points in time are difficult to obtain. 
 To overcome this challenge, we need a robust approach 
for learning the symbols of interest, based on large numbers 
of training samples, such as convolutional neural networks 
(CNN). CNNs have recently received considerable attention 
in object recognition, classification, and detection tasks in 
general [6]. Furthermore, machine learning techniques such 
as deep learning have increasingly been applied for 
information extraction from earth observation data 
[7,8,9,10,11] and this naturally projects into the idea of 
applying such techniques to other types of geospatial data. In 
this paper, we examine the use of geographic contextual data 
to guide graphics sampling for automatically generating 
training images. This approach can automatically generate 
thousands of training samples to allow the utilization of a 
CNN in a robust recognition system for building symbols and 
urban areas in historical map sheets.  

2 Data & Methodological Approach 

The USGS has scanned more than 180,000 historical map 
sheets and stored the entire map series in a digital archive. 
While urban areas in these map sheets are uniquely coloured 
areas, building symbols are shown with small black 
rectangles or polygons (Fig. 1c). We test our approach on a 
map sheet of Boulder, Colorado (1966) at a map scale of 
1:24,000 scanned at a resolution of 500 dpi in the RGB colour 
space. 
 We use contemporary integrated land parcel/building data 
as the contextual spatial data layers. The temporal 
information of when a building has been established can be 
derived from the parcel data attributes. Spatially refining 



these parcel boundaries with high-resolution LiDAR-derived 
building footprints makes it possible to create snapshots of 
existing buildings at different points in time. Such rich 
training data are available for only a selected number of 
counties in the U.S., including Boulder County, Colorado. 
Thus, we first train and test the graphics recognition system 
for those counties for which such contextual data exist. Once 
successful, we will then expand the approach to extract 
building symbols and urban areas from map sheets of other 
regions as well. This approach assumes that the learning 
capabilities and recognition models are robust and 
generalizable enough to be applied to regions for which 
contextual data do not exist, i.e., that building symbols can be 
expected to be similar across map sheets.  

2.1 Aligning contextual data with historical maps 

We collect training data (graphics examples) using the above-
described contextual geographic layer as a constraining 
variable, i.e., at map locations where the feature of interest 
can and cannot be expected (positive and negative samples). 
The successful use of the contextual spatial data requires a 
satisfactory geographical co-registration between the scanned 
historical map and the contemporary building footprints. 
However, due to the positional uncertainty in the historical 
map, geometric features are often misaligned, and such 
positional discrepancies manifest themselves by offsets or 
slight rotations when compared to the contextual data (Fig. 1).   
 

 
Fig. 1: Examples of positional offsets between building 
symbols and contextual data: (a) significant offset (map 

symbol outside the subimage), (b) moderate offset (partial 
overlap) and (c) minor offset (mostly overlapping) 

 
Such positional uncertainty can be linked to the 

georeferencing process of the scanned map, distortions in the 
paper map document, the level of feature generalization at a 
given map scale, the map production process, and data 
acquisition techniques. The USGS preserved the coordinate 
pairs of ground control points (GCPs) used for 
georeferencing. We use this information to adjust the 
contextual data to reduce distortions introduced during the 
georeferencing process using a least squares second order 
polynomial transformation. Fig. 2 shows the direction and 
magnitude of the error vectors for an exemplary map. Fig. 3 
shows the effect of a first and second order transformation on 
the example of alignment between railroad features. These 
uncertainties can be different among map sheets and thus the 
success of the correction may vary. 
 

 

 
Fig. 2: Residual error vectors (direction and magnitude) for 

the GCPs used for georeferencing the maps obtained by 
least squares second order polynomial transformation. 

  
 

Fig. 3: Effect of the alignment of contextual data to map 
distortions introduced by GCP inaccuracies shown for a 

railroad on a USGS topographic map. 

2.2 Training data creation through guided sampling 

First, we clip the features in the contextual layer to the extent 
of a given map. Training data consists of two main classes: 
positive and negative. Ideally, the positive class will only 
contain examples of urban areas and individual buildings, 
which are the two subclasses of positive samples. The 
negative class, no buildings, consists of representative 
examples of anything else in the map (e.g., background, text, 
roads, rivers, and elevation lines). Our goal is to automatically 
collect positive samples from within focal windows (42x42 
pixels, corresponding to 50x50 meters) centred at the centroid 
of each building polygon in the contextual data (by cropping 
sub-images of the historical map using the extents of these 
focal windows). However, the above-described positional 
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discrepancies between contextual geographic data and the 
map symbols result in additional challenges during training 
data creation and require a systematic process to identify 
representative and reliable training samples within the set of 
sub-images (Fig. 4). Therefore, we incorporate domain 
knowledge of the graphical representation of the subclasses 
(i.e., urban areas and individual buildings) in the map for the 
guided training process.  
 First, we determine training samples for the urban area 
positive sub-class as follows (Step 1 in Fig.4). We consider a 
sub-image cropped around building centroids in the 
contextual data a representative urban area sample if the 
green/red colour ratio of the dominant colour within the focal 
window after running a Gaussian filter and a k-means 
clustering colour reduction step is less than 0.8 (Fig. 5). 
 

 
Fig. 4: Workflow of graphics sampling for training data 

creation. 
 

 
Fig. 5: Example of the image processing chain for the 

detection of urban training samples. 
 
Second, we derive positive samples for the individual 
buildings subclass from the remaining sub-images as follows 
(Step 2 in Fig. 4). After applying a Gaussian filter to the 
grayscale sub-image to remove irrelevant noise, we 
emphasize dark pixels (potential building symbols) in the sub-
image by inverting the colour space and using a threshold 
(Fig. 6). Then we use the Scale-Invariant Feature Transform 
(SIFT, [12]) algorithm to detect maxima in the Difference of 
Gaussian (DoG) scale space, which are potential keypoints. 
Here, we set the maximum number of potential keypoints to 
one. Due to the previously applied Gaussian filter (i.e., 
removal of sharp edges) the DoG maximum tends to be 
detected at the building centre. Hence, if a keypoint is 
detected in a given pre-processed sub-image, the system 
assumes the presence of a building at the keypoint location 
with a high confidence and labels the entire sub-image as a 
building training sample. 
 

 
Fig. 6: Example of the processing chain for the creation of 

individual building training samples. 
 
 Third, the system also needs to collect negative graphics 
samples (Step 3 in Fig. 4). To do so, we buffer all building 
centroids in the contextual data by a distance of 100 meters 
(84 pixels). We then apply a random sampling scheme to 
collect negative examples by cropping sub-images at random 
locations within the area outside of the buffer areas. 
 Here, we create 10,000 negative samples (i.e., no 
buildings). In order to obtain a balanced set of training 
samples for all three classes, we oversample the graphics 
samples of urban area and individual buildings yielded by the 
training data creation process using random duplicates until 
an equal sample size of 10,000 is reached (see [13]). 
 We use t-Distributed Stochastic Neighbor Embedding (t-
SNE) plots [14] to visually assess the quality of the created 
training data. T-SNE is a technique for reducing the 
dimensionality of data and is effective for the visualization of 
high-dimensional datasets in a 2D space arranging the 
features in direct neighbourhood according to their mutual 
similarity based on pairwise L2 distance in the feature space. 
In this study, we create t-SNE plots for each sub-class and 
rectify them using a nearest-neighbour technique to visualize 
labels of urban area, individual buildings, and no buildings, 
respectively. This results in groups or clusters of similar 
training samples in each of the plots (Fig. 7). 
 

 
Fig. 7. a) Historic topographic map (Boulder CO, 1966), and 

rectified t-SNE plots of extracted training samples for b) 
urban area, c) no buildings, and d) individual buildings. 



2.3 CNN-based feature extraction  

In this study, we apply convolutional neural networks (CNN). 
More specifically, we use a variant of the classical LeNet 
architecture, which has been successfully applied for the 
recognition of handwritten digits ([15], see Fig. 8). Here, we 
apply LeNet for inference on the presence of settlements in 
the entire map, using the training data created in Section 2.2. 
 

 
Fig. 8: Layer configuration of the LeNet CNN applied. 

3 Preliminary Results 

Out of the total amount of sampled data, we used 60% for 
model training, 20% for testing during the training phase, and 
held out 20% for validation. In addition, we manually 
digitized the features of interest within a portion of the target 
map to run an objective comparison during validation. Using 
a learning rate of 0.001 the CNN yielded an overall accuracy 
of 0.59 after 5,000 iterations running on a simple Intel I7 
CPU with NVIDIA GeForce GT 740 GPU (training time: 14 
minutes). 
 We used the trained CNN to predict the labels of the three 
classes of interest for 50x50m sub-images in the map at a 
given stride s. As a result, the model created class score maps 
of spatial resolution s. By assigning the class of highest score 
to each patch of s x s meters, we created a three-class 
segmentation of the map: no buildings, urban areas, and 
individual buildings. We processed the subset of the map for 
which we manually digitized reference data (Fig. 9), using a 
stride of two meters. Figure 10 shows the class score maps 
and the segmentation result. 
 

 
Fig. 9: A subset of the map used for validation. 

 

 

 

 
Fig. 10: Predicted score maps for (a) no buildings, (b) urban 

areas, (c) individual buildings, and (d) segmentation result for 
the map subset (stride of 2m). 

 
 As expected, the validation of the CNN classifier using 
the 20% of the samples that we held back during the training 
process provided highly biased accuracy measures, probably 
because the negative sample was not representative of the 
underlying variability of the no-buildings signature in a 
considered map. Therefore, we used the manually digitized 
reference data from the map subset (Fig. 9) as the validation 
base and found more objective results in calculating the 
confusion matrix (Fig. 11). This matrix equated to the 
following overall accuracy measures: 
 

- Percentage of correctly classified (PCC) = 0.81 
- Kappa index = 0.66 
- Normalized Mutual Information (NMI) = 0.46 

a 

b 

c 
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Fig. 11: Confusion matrix of the CNN validation (in %) using 

digitized data from a portion of the test map. 
 
 Class-specific accuracy metrics (i.e., precision and recall) 
for all three target classes are shown in Table 1: 
 

Class Precision    Recall  

No buildings 0.98      0.70 

Urban area 0.85 0.98 

Individual buildings 0.06 0.99 

Table 1: Class-specific accuracy metrics derived from the 
confusion matrix in Fig. 11. 

 
 As can be seen by comparing Figs. 9 and 10d, there were 
numerous locations of false positive labels for individual 
buildings, which means the precision of the individual 
building class was low. For example, numerous building 
locations were labeled within text labels and along roads and 
railroads. However, the high recall measure confirms that 
most buildings in the map were included in the predicted set 
of labels. These results indicate a high sensitivity to building 
signatures but poor discriminatory power regarding features 
of similar color and shape characteristics. 
 For the recognition task on the entire map, we predicted 
the labels of the three classes of interest for 50x50m sub-
images at a stride of 20m (Fig. 12). Visually comparing the 
result with the original map (Fig. 7a), we found that the urban 
area (red) was extracted well by the CNN, but identified high 
proportions of false positives in the individual buildings class 
as confirmed by the confusion matrix and the map subset 
shown in Figs. 9 and 10. 

4 Discussion 

While the relatively high rate of false positives in the 
individual building class deserves more attention for 
improving the system, the high recall measure for the same 
class is encouraging as are all other class-specific accuracy 
measures. The current limitations in form of low precision for 
the individual building class can be linked to the sampling 
strategy (oversampling) and the high rate of confusion of map 
symbols belonging to the black map layer. The system 
currently fails to consider size or shape properties of the 

target symbol (e.g., isolation/connectedness, contiguity; part 
of larger object or not). 
 

 
Fig. 12: Predicted settlement locations for the historical map 

(Boulder, Colorado, 1966): Black pixels are individual 
building locations with obvious high false positive rate; 

red pixels are urban areas. 
 
 However, the described results indicate that the segmented 
class of individual buildings has the benefit that most building 
symbols in a map page were extracted (recall = 0.99). This 
can be seen as a successful first extraction step based on 
which subsequent image processing steps can be applied for 
further refinement to systematically narrow down the most 
likely locations of building symbols and thus filter out those 
false positives. For example, such subsequent post-processing 
will consider different options including the testing of 
dimensional measures (length, area, number of connected 
components) or geometries of underlying map contents that 
falsely contain detected single building labels. Based on such 
measures, the system will be able to identify the most likely 
candidate labels for individual buildings among those 
currently classified. 
 In the next steps, we will apply more complex CNNs with 
greater depth (e.g., VGGNet) in a more performant 
computational environment, create more abundant and more 
representative negative training samples, examine the effects 
of the used sampling scheme, and extend this extraction task 
to larger amounts of map sheets. This could include the use of 
contextual road network data to systematically increase the 
proportion of road samples in the negative class. In addition 
to that, the CNN-based image segmentation result could be 



improved by using further geographic context layers or by 
applying post-segmentation refinement techniques. 
Geographic contextual information derived from existing, 
remote-sensing derived land cover data products can also be 
used for thematic validation and calibration of the proposed 
method.  
 Longer-term problems to solve will include those of 
domain adaptation and transfer learning [16] in the context of 
applying the extraction procedure to a large number of map 
sheets. Training data as shown here is available for only a few 
counties in the U.S. Making inference for map sheets of the 
entire U.S. will result in differences in spectral characteristics 
of scanned map documents and map symbology. Thus, 
training and inference will take place in different data 
distributions due to variations in symbology and map 
properties, and the system needs to be robust against such 
differences. 
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