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Abstract. Converting geographic features (e.g., place names) in map images 9 
into a vector format is the first step for incorporating cartographic information 10 
into a geographic information system (GIS). With the advancement in compu-11 
tational power and algorithm design, map processing systems have been con-12 
siderably improved over the last decade. However, the fundamental map pro-13 
cessing techniques such as color image segmentation, (map) layer separation, 14 
and object recognition are sensitive to minor variations in graphical properties 15 
of the input image (e.g., scanning resolution). As a result, most map processing 16 
results would not meet user expectations if the user does not "properly" scan 17 
the map of interest, pre-process the map image (e.g., using compression or 18 
not), and train the processing system, accordingly. These issues could slow 19 
down the further advancement of map processing techniques as such unsuc-20 
cessful attempts create a discouraged user community, and less sophisticated 21 
tools would be perceived as more viable solutions. Thus, it is important to un-22 
derstand what kinds of maps are suitable for automatic map processing and 23 
what types of results and process-related errors can be expected. In this paper, 24 
we shed light on these questions by using a typical map processing task, text 25 
recognition, to discuss a number of map instances that vary in suitability for 26 
automatic processing. We also present an extensive experiment on a diverse set 27 
of scanned historical maps to provide measures of baseline performance of a 28 
standard text recognition tool under varying map conditions (graphical quality) 29 
and text representations (that can vary even within the same map sheet). Our 30 
experimental results help the user understand what to expect when a fully or 31 
semi-automatic map processing system is used to process a scanned map with 32 
certain (varying) graphical properties and complexities in map content.  33 
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1. Introduction 37 

Digital map processing refers to a set of techniques for converting map images 38 
(created through scanning of paper maps or produced as electronic raster 39 
maps) into the vector format. This conversion is usually the first step for incor-40 
porating geographic information encapsulated in maps (e.g., place names, 41 
place types, build-up areas, contour lines) into a spatial-analytic environment, 42 
such as a geographic information system (GIS). Since the early 80s, various 43 
map processing systems (including both software and hardware tools) were 44 
developed to facilitate manual map processing tasks. Today, the efficiency, ac-45 
curacy, and degrees of automation of map processing systems have been in-46 
creased considerably (concerning processing speed and the capability to pro-47 
cess a variety of maps and map features). The systems that are in place 48 
nowadays can be classified by their capabilities into four categories: (1) Basic 49 
raster-to-vector conversion tools with a minimum of automation (e.g., Esri 50 
ArcScan2), which can be applied to a wide variety of map types with different 51 
graphical conditions (by leveraging human vision), (2) Semi-automatic 52 
systems, which provide some degrees of automation to reduce manual 53 
digitization efforts (e.g., AutoCAD RasterDesign3), (3) Fully automatic systems 54 
for processing a specific map type; this type-dependency often has the 55 
disadvantage that the system relies on the user to fine tune the digitization 56 
settings (requiring expert knowledge in image processing and graphics 57 
recognition, e.g., Map Vectorizer4), and (4) Fully or semi-automatic systems 58 
that are not limited to a particular map type but designed to extract only 59 
specific types of map features (e.g., map labels (Chiang and Knoblock, 2014)). 60 
The reader is referred to Henderson (2014) and Chiang, Leyk, and Knoblock 61 
(2014) for detailed reviews on map processing techniques and systems. 62 

Despite the exponential growth in computational power and advancement in 63 
graphics recognition algorithms in the last decade, most fundamental 64 
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techniques that support automatic map processing such as color segmentation, 65 
(map) layer separation, and object (or symbol) recognition are still limited 66 
when processing low quality or complex map images (Cherkassky and Mulier, 67 
1998; Cordella and Vento, 2000; Llados et al., 2002). These techniques are 68 
sensitive to minor variations in graphical properties of the input image (e.g., 69 
different scanning parameters such as resolution) (Marr, 1982; Cherkassky and 70 
Mulier, 1998) and usually require a priori knowledge of the map properties and 71 
content (e.g., size of map objects, and cartographic styles). As a result, most 72 
map processing systems would fail if the user does not "properly" prepare the 73 
map document for processing and train and tune the underlying algorithms. 74 
Since the general user rarely has expert knowledge of the underlying map pro-75 
cessing techniques, a map processing system is often perceived as a black box 76 
that converts a map image into spatial data that are readily accessible in a GIS. 77 
One significant implication is that after a few attempts to use a map processing 78 
system, the user would give up if the results do not meet user expectations and 79 
move to less sophisticated tools for manual raster-to-vector conversion. Not 80 
only does this create a discouraged user community, but it also slows down 81 
further development of advanced map processing techniques as less sophisti-82 
cated tools would be seen as more viable solutions.  83 

Therefore, it is critical for a user to understand what kinds of maps are suita-84 
ble for automatic (or semi-automatic) map processing and what types of re-85 
sults can be expected. This directly relates to further questions concerning the 86 
reliability and objectivity of accuracy assessments. Knowing how sensitive the 87 
performance of map processing techniques will be based on variations in 88 
graphical quality will inform the user how accuracy could vary across map 89 
types and even within one map image in which target features may show differ-90 
ences in graphical properties. In this article, we shed light on such questions. 91 
We choose a typical map processing task, text recognition, and discuss how the 92 
degree of suitability for text recognition varies across map instances that differ 93 
graphically. Furthermore, we carry out an experiment on text recognition in 94 
scanned historical maps of various types and origins to demonstrate the impact 95 
such variations can have on performance across different levels of graphical 96 
quality. This experiment enables accuracy assessment of automatic text recog-97 
nition results for map labels in a variety of graphical conditions and provides a 98 
guideline for estimating the suitability of a given map for automatic text pro-99 
cessing. 100 

In the next section, we review various types of maps tested in the literature on 101 
text recognition using automatic or semi-automatic map processing systems. 102 



These maps carry different forms and types of text and show varying degrees of 103 
complexity due to overlapping map layers and density of cartographic infor-104 
mation. Then we discuss in detail the most relevant properties of map images 105 
affecting text recognition accuracy. Next, we introduce an automatic text 106 
recognition system from our previous work (Chiang and Knoblock, 2014), and 107 
describe an experiment on a set of scanned historical maps including Ordnance 108 
Survey maps 5  produced in the United Kingdom and several other maps 109 
produced in the United States. The experiment demonstrates the baseline 110 
performance of this text recognition system on maps with a variety of text 111 
representations. We discuss how potential users can evaluate the suitability of 112 
a map of interest for text recognition tasks. Finally, we present future outlooks 113 
on how text processing in digital maps should further evolve to reach higher 114 
degrees of automation and more robust recognition results. 115 

2. Common Map Types Subject to Automatic Text 116 
Recognition and Related Accuracy Issues 117 

Text recognition from digital map images is one of the most common map pro-118 
cessing tasks, which determines the locations (e.g., bounding boxes or center 119 
points) of text objects and generates machine editable strings for individual 120 
text labels in the map (Ye and Doermann, 2014). A large number of studies on 121 
text recognition in digital maps can be found in the literature (e.g., Nagy et al., 122 
1997; Velázquez and Levachkine, 2004; Gelbukh et al., 2004; Pouderoux et al., 123 
2007; Chiang and Knoblock, 2014; Simon et al., 2014). These studies in which 124 
typically text labels are extracted from map images and incorporated into sub-125 
sequent processing steps of Optical Character Recognition (OCR) have a wide 126 
range of applications such as building gazetteers, carrying out historical re-127 
search on location name changes or studying changes in the landscape and 128 
land-use. In addition, extracting and removing map text can improve the 129 
recognition of other geographic features such as cadastral boundaries (Cao and 130 
Tan, 2002), vegetation features (Leyk et al., 2006), elevation contours 131 
(Khotanzad and Zink, 2003) or roads (Li et al., 2000; Chiang and Knobock, 132 
2013). 133 

A variety of map types that have been tested in the literature either for text 134 
recognition or for removing map text labels include: cadastral or land register 135 
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maps (e.g., Raveaux et al., 2008), road maps (e.g., Bin and Cheong, 1998; 136 
Itonaga et al., 2003; Dhar and Chanda, 2006; Bucha et al., 2007; Chiang et al., 137 
2013; Chiang and Knoblock, 2013), hydrographic maps (e.g., Trier et al., 1997), 138 
city maps (e.g., Chen et al., 1999), utility maps (e.g., den Hartog et al., 1996), as 139 
well as topographic or other survey maps (e.g., Bessaid et al., 2003; Miyoshi et 140 
al., 2004; Chen et al., 2006; Leyk et al., 2006; Leyk and Boesch, 2009; Xin et 141 
al., 2006; Henderson et al., 2009). We show several examples of the above map 142 
types in the next section to illustrate key characteristics and conditions relevant 143 
for text recognition in detail. 144 

Most map processing systems cannot process different types of maps automati-145 
cally, which is, in particular, true for text recognition. This is because maps 146 
have a complex layout in which text labels appear in various forms, colors and 147 
size categories, which requires manual identification of processing parameters 148 
and system training. Recent studies show an increasing potential to establish 149 
text recognition systems that provide reliable solutions across different types of 150 
maps, but their accuracy can vary significantly across map types (e.g., Chiang 151 
and Knoblock, 2014; Simon et al., 2014). Moreover, variations in text label 152 
characteristics (e.g., text color) can also occur within maps of the same types or 153 
even a single map page as a result of the scanning and image compression 154 
process, differences in map complexity, and inconsistencies of graphical quality 155 
in the original map (due to aging or bleaching). Thus, the same recognition 156 
method may perform differently in various parts of one map. Understanding 157 
such recognition sensitivities to variations in graphical properties can further 158 
improve the ability to forecast the potential for automatic text recognition and 159 
highlight possible recognition errors automatically. Importantly, this will also 160 
lead to realistic and objective accuracy assessments by differentiating graphical 161 
quality levels found among text labels in maps. 162 

3. Key Characteristics Indicating the Potential for Au-163 
tomated Text Recognition in Maps  164 

Much of the potential for a certain map to be processed with a high degree of 165 
automation is directly related to the number of studies that focus on this type 166 
of map (e.g., more studies exist on maps with Latin scripts compared to other 167 
languages). In this section, we present example maps of different types and 168 
discuss a variety of characteristics that can be used to estimate the suitability of 169 



these maps for automatic text recognition and those that would indicate the 170 
need for user intervention and manual digitization efforts.  171 

The discussion is structured by the major characteristics of text labels and map 172 
content: language (script), font, curvature and spacing, print and image quali-173 
ty, text color as well as map complexity. In general, the aim in most studies on 174 
text recognition in maps is to detect, extract, and transfer text labels to an OCR 175 
component, which then performs the final recognition process (Nagy et al., 176 
1997; Cao and Tan, 2000; Li et al., 2000; Velázquez and Levachkine, 2004; 177 
Gelbukh et al., 2004; Pouderoux et al., 2007, Chiang and Knoblock, 2014). 178 
How well map labels can be identified and recognized heavily depends on the 179 
characteristics described below. 180 

3.1. Map Language 181 
Current OCR software packages, such as the open source Tesseract-OCR6 or 182 
commercial ABBYY FineReader,7 support a wide range of language scripts, in-183 
cluding Latin, Chinese, Korean, Japanese, Hebrew, Arabic, and Indian scripts. 184 
However, most of the text recognition work for processing raster maps is lim-185 
ited to Latin scripts, including Spanish (e.g., Gelbukh et al., 2004), French 186 
(e.g., Pouderoux et al., 2007), and English (e.g., Chiang and Knoblock, 2014). 187 
The main reason is that the document analysis techniques used for detecting 188 
locations of text labels in maps are well developed for Latin scripts but less so 189 
for other scripts. However, just as OCR progresses over the years from 190 
handling only Latin scripts (Rice et al, 1995; Smith, 2007) to more complex 191 
scripts, such as degraded Indian scripts (Shukla and Banka, 2014), we expect 192 
further progress in developing automatic recognition methods that can handle 193 
a variety of scripts in maps. Of course, the performance of text recognition 194 
methods in maps with Latin script also depends on other graphical conditions 195 
and map characteristics. Lower levels of general image quality will always im-196 
pact the extraction (e.g., coarse resolution images carry a limited potential for 197 
automatic text recognition for any script). 198 

3.2. Map Fonts 199 
Maps with common typewritten fonts usually show the best results in automat-200 
ic text recognition (Figures 1 and 2) compared to maps with less common fonts 201 
(e.g., Fraktur, Antiqua) or stenciled and handwritten text. Text with uncom-202 
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mon typewritten fonts requires additional training on specific character sets 203 
and yields lower OCR accuracy (Helinski et al., 2012). Figure 3 shows an exam-204 
ple map with stenciled text. Historical maps are traditionally prepared with 205 
manually written or stenciled text, which adds to the challenges in text recogni-206 
tion in older cartographic documents that can suffer from inferior graphical 207 
quality and archiving effects (e.g., Gelbukh et al., 2004; Raveaux et al. 2007, 208 
2008; Simon et al., 2014). 209 

 210 
Figure 1. An example of typewritten fonts in a scanned map for which OCR performs 211 
well (Panama, USGS National Imagery and Mapping Agency (NIMA) ref. no. 212 
E762X38382). 213 

 214 
Figure 2. An example of typewritten fonts in a computer generated map for which 215 
OCR can perform well (Kabul city center, Afghanistan Information Management Ser-216 
vice). 217 



3.3. Character Spacing, Label Curvature and Orientation 218 
OCR software works most robustly if the input text labels are geometrically 219 
straight (vertically positioned characters) with regular character spacing and 220 
horizontal orientation. Such text labels also have a higher chance to be detected 221 
automatically compared to labels with non-horizontal orientation (Figure 2), 222 
curved labels (Figure 4) or labels with wide or irregular character spacing (Fig-223 
ures 3 and 5). Automatic systems often break curved labels and labels with 224 
wide character spacing into separate string segments, which then require man-225 
ual post-processing to regroup these string segments (e.g., Velázquez and 226 
Levachkine, 2004; Chiang and Knoblock, 2014). 227 

 228 
Figure 3. Stenciled text in a historical map of Denmark. 229 

 230 

 231 
Figure 4. Examples of curved labels in an Afghanistan map.  232 
Source: United Nations 233 



 234 
Figure 5. Text labels with wide character spacing in a historical map of Taiwan. 235 

3.4. Print Quality 236 
In general, automatic map processing systems rely on superior print quality of 237 
the original paper maps with a minimum of blurring and false coloring to pro-238 
duce accurate results (Henderson, 2014; Chiang, Leyk, and Knoblock, 2014). 239 
However, old printing technology was limited in quality and the final printout 240 
often suffered from such problems. Print quality is often related to and can be 241 
further decreased through bleaching of the map as a direct consequence of ag-242 
ing paper material and the archiving practice. How sensitive the paper material 243 
can be to the archiving conditions becomes obvious in historical maps of more 244 
than 100 years of age (Leyk et al., 2006). Figure 6 shows an example of blur-245 
ring and false coloring. The quality of a printed map also depends on the en-246 
graving techniques (e.g., stone and copper engraving) used to produce older 247 
maps. The transition to modern production techniques varies among countries. 248 
Unfortunately, the original plates used for engraving have been disposed in 249 
many cases making the paper maps the only sources left. In summary, the de-250 
gree of blurring, false coloring, and mixed colors provides a strong indication of 251 
the potential of automated recognition on a given map. Text in maps often 252 
overlaps with other map layers (e.g., Figures 4 and 6), which makes text recog-253 
nition particularly sensitive to such general printing quality issues. 254 

3.5. Image Quality 255 
State-of-the-art OCR software (e.g., Tesseract-OCR and ABBYY FineReader) 256 
requires an image resolution of the scanned input image of at least 300 dots-257 
per-inch (DPI) to achieve the best results in “well-conditioned” documents 258 
(e.g., see Yin and Huang, 2001; Liu, 2002; Pouderoux et al., 2007). This num-259 
ber increases for maps of high density and complexity such as topographic 260 



maps (see Section 3.6). Figures 7 and 8 show a comparison of the text appear-261 
ance in a map scanned with 150 DPI and 300 DPI, respectively. There are sev-262 
eral instances in which images in digital map archives would be stored with a 263 
resolution too coarse to differentiate the smallest elements shown in a map. 264 
One of the main reasons is hardware limitations as scanners capable of scan-265 
ning large format documents are expensive and scanning with high resolution 266 
is a time-consuming process. Since priority is generally given to a timely com-267 
pletion of a scanning project, such key parameters are often underestimated. 268 
As a guideline, the resolution of a scanned map image subject to automated 269 
information extraction should facilitate the graphical and visual distinction of 270 
the smallest entities in that map. This guideline relates to the concepts of reso-271 
lution vs. detection in remote sensing imagery, i.e., to detect an object of a cer-272 
tain size the resolution has to be fine enough to be able to spatially and spec-273 
trally identify and characterize this object and reduce mixed pixel effects. Text 274 
in maps often has varying dimensions (i.e., line thickness) and thus represents 275 
a highly sensitive map element regarding resolution. Characters or character 276 
chains may become disconnected because thin object parts cannot be repre-277 
sented graphically with the pixel size given. In contrast, creating extremely 278 
high-resolution images may result in inefficient map processing. Also, a map 279 
image should not be processed by lossy image compression algorithms (e.g., 280 
JPEG8) as important structural elements become compromised and cannot be 281 
reproduced. Figure 9 illustrates how lossy compression of a map image results 282 
in pixelated map objects and increased color confusion. 283 

In addition to image resolution, the color encoding (if the map contains color 284 
layers) used for scanning and processing as well as the bit-depth of the image 285 
data are also important factors with regard to image quality. Color encoding is 286 
most relevant in preprocessing steps such as color image segmentation (Leyk, 287 
2010; Leyk and Boesch, 2010) for generating clear character representations 288 
input to OCR (Chiang and Knoblock, 2014). Choices of color spaces include 289 
RGB (red, green, and blue), HSL (hue, saturation, and luminance), or CIE 1976 290 
L∗u∗v. The bit-depth of the image indicates the maximum number of unique 291 
colors that can be represented in an image, which is important in recognition 292 
tasks in which objects to be distinguished are very similar in color. In most text 293 
recognition tasks, the use of 24-bit data during the scanning process is suffi-294 
cient to produce clear text appearance (e.g., crisp character edges) for OCR. 295 
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 296 
Figure 6. An example of poor print quality in a NIMA evasion chart (EVC NH-36A, 297 
NIMA ref. no. EVCXXNH36A). 298 
 299 

  300 
(a) 150 DPI                    (b) 300 DPI 301 
Figure 7. Comparison of text appearance under different image resolutions (Kunduz 302 
city map, Afghanistan Information Management Service). 303 
 304 



    305 
 (a) 150 DPI                   (b) 300 DPI 306 
Figure 8. Comparison of text appearance under different resolutions chosen for the 307 
scanning process; NIMA tactical pilotage chart (Australia, TPC Q-15A, NIMA ref. no. 308 
TPCXXQ15A). 309 
 310 

    311 
Figure 9. Low image resolution and lossy image compression compromise the ap-312 
pearance of text and map features (United Nations Environment Programme and Unit-313 
ed Nations Institute for Training and Research Operational Satellite Applications Pro-314 
gramme map). 315 

3.6. Map Complexity 316 
Maps can contain dense and overlapping map features (of the same or different 317 
color layers) and text (e.g., Figure 10), which makes map images a challenging 318 
document type for recognition tasks (Cordella and Vento, 2000; Llados et al., 319 
2002). As a consequence, frequent instances of mixed colors and merged map 320 
objects may occur impeding the identification or separation of features or sym-321 
bols. For highly complex maps, such as topographic maps, an image resolution 322 
of at least 500 DPI has been demonstrated suitable in recent research (e.g., Li 323 
et al., 2000; Liu, 2002; Leyk and Boesch, 2009; Chiang et al., 2014) in order to 324 
ensure that map processing techniques (including text recognition) produce 325 
robust results. Issues of image and print quality (as described above) in combi-326 
nation with map complexity can be found in historical maps, which therefore 327 



represent particularly challenging documents for recognition tasks including 328 
text recognition (Simon et al., 2014). 329 

 330 
Figure 10. A sample map with complex and dense content, text with small fonts and 331 
in different colors (Muqdisho, Somalia, NIMA ref. no. EVTXXMUQDISHO). 332 

3.7. Color of Map Features 333 
Ideally, map features of the same type should have a distinct color avoiding 334 
merging and color mixing effects as mentioned above under print and image 335 
quality. However, Figure 11 shows one of many examples where the text labels 336 
and the road edges are both drawn in black. In this case, the recognition task 337 
would likely require manual post-processing for recovering the text labels that 338 
overlap with road edges. Even if text color would be different from other map 339 
layers, there may still be significant problems regarding color variations and 340 
mixed colors, i.e., colors may not be clearly differentiated everywhere as an 341 
issue of print quality. Image quality issues (e.g., bleaching, blurring, resolution, 342 
and color space used for scanning) may add to these points. In general, if text 343 
appears in the same color as other map layers, the success of text recognition 344 
will depend on the degree of complexity of the map and the frequency of over-345 
laps between these layers. 346 



 347 
Figure 11. Both text and roads are drawn in black color; red precinct boundaries and 348 
black text labels overlap resulting in mixed colors (1920 Los Angeles precinct map, Los 349 
Angeles City Archive). 350 

4. Data and Experimental Setting 351 

This section describes the tested map products, the characteristics of the map 352 
content (including map labels), and the test system. 353 

4.1. Tested Map Products and Their Characterization 354 
To demonstrate the differences in text recognition outcomes under varying 355 
graphical conditions and text properties as discussed in Section 3, we tested the 356 
performance of a text recognition tool for six different map products (Table 1), 357 
including the 1920 6-inch Ordnance Survey topographic maps from the 358 



National Library of Scotland,9 and United States historical railway, auto road 359 
and mileage maps from the David Rumsey Map Collection.10 360 

 361 

Table 1. The metadata of the six tested map products. 362 

Map Title / Coverage DPI 
(approx.) Map Scale Publisher Date 

Ordnance Survey Six-inch Map, 
London, U.K. 406 1: 10,560 Ordnance Survey 1920 

Cram’s Railroad and Township 
Map, Florida11 336 1: 1,330,560 Cram Atlas  

Company 1875 

Map of the Northern Pacific 
Railroad and connections12 302 1: 7,500,000 Rand McNally 1879 

Map Of Missouri, Showing Line 
and Land Grant of the St. Louis 
& San Francisco Railway13 

304 1: 1,966,700 Woodward, Tiernan 
& Hale 1879 

Auto Road Map, Colorado14 402 1: 1,700,000 Rand McNally 1927 
Black and White Mileage Map, 
South Dakota15 379 N/A Rand McNally 1924 

 363 

Within several map pages from the Ordnance Survey six-inch map series of the 364 
U.K., we tested ten map subsections near London each covering 1,000 x 1,000 365 
square meters in the TQ grid (the British National Grid), equal to 1,512 x 1,512 366 
pixels. For each of the historical U.S. maps, we selected one map subsection 367 
ranging from 753 x 665 to 1,176 x 1,121 pixels for testing. Figures 12-18 show 368 
examples of the test maps, which represent a wide range of variations in map 369 
conditions and labeling styles. Based on the criteria relevant for text recogni-370 
tion (see Section 3), text labels in these maps can be characterized as follows: 371 
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Map Language and Fonts: 372 
The Ordnance Survey maps have Latin scripts (English) and use common fonts 373 
with the exceptions of some special locations (Figures 12 and 13). The other 374 
historical maps have Latin scripts (English) and use uncommon fonts (likely 375 
stenciled text) varying within the same map (Figures 14 – 18) (see Section 3.2).  376 

 377 
Figure 12. An example area of the tested Ordnance Survey map (TQ) (see Table 1). 378 
 379 

 380 
Figure 13. An example of an uncommon font in the Ordnance Survey maps. 381 
 382 



Print and Image Quality: 383 
The test map subsections are relatively free from print quality issues (discussed 384 
in Section 3.4) with the exceptions of the Map of Missouri that shows a visible 385 
fold line (Figure 15), and three other U.S. maps that were scanned out of books 386 
and show bleed-through from the back side (Figures 15 – 17). The image format 387 
of the test maps is TIFF without lossy compression. The exact scan resolutions 388 
of the original maps were not available. We estimated the image resolutions 389 
using the dimensions of the scanned images in pixels and the available sizes of 390 
the map documents in inches. The estimated resolution for every test map was 391 
higher than 300 DPI (Table 1). To test the impact of decreasing image quality 392 
for text recognition, we manually scaled the image dimensions of each map to 393 
165%, 132%, 66% (medium), 50% (low), 33%, and 17%, respectively, using the 394 
bicubic interpolation. This interpolation method was carried out to simulate 395 
different image resolutions and possible compression defects combined. Note 396 
that when the map image was scaled up using the bicubic interpolation (165% 397 
and 132%), the DPI of the image did not increase. Our goal was to use these 398 
enlarged images to simulate the map content scanned at a higher DPI (e.g., 399 
larger font sizes and wider character spacing). We tested the performance of 400 
text recognition in all 15 map sections for each image quality level.  401 

Label Curvature and Character Spacing, Map Complexity, and Color 402 
of Map Features: 403 
The map layers of most maps tested are primarily represented in black (often 404 
blurred) color except for the contour lines, hydrography, and railroads. Other 405 
characteristics (label curvature, spacing, and map complexity) showed great 406 
variation among the test maps and were therefore (together with above charac-407 
teristics) used to divide the map labels into three groups of general map prop-408 
erties relevant to recognition accuracy. These groups are described in the next 409 
subsection. 410 

 411 



Figure 14. An example area of the tested Cram’s Railroad and Township Map, Florida 412 
(see Table 1). 413 
 414 

 415 
Figure 15. An example area of the tested Map of the Northern Pacific Railroad and 416 
connections (see Table 1). 417 
 418 

 419 
Figure 16. An example area of the tested Map Of Missouri, Showing Line and Land 420 
Grant of the St. Louis & San Francisco Railway (see Table 1). 421 
 422 

 423 



Figure 17. An example area of the tested Auto Road Map, Colorado (see Table 1).. 424 
 425 

 426 
Figure 18. An example area of the tested Black and White Mileage Map, South Dakota 427 
(see Table 1). 428 

4.2. Groups of Text Representations Based on Map Characteristics  429 
Here, we define three groups of text representations of varying quality based 430 
on general map characteristics relevant to recognition. Each group contains 431 
characters in different sizes. Characters with a larger font size do not guarantee 432 
to have better recognition results than characters with a smaller font size in a 433 
map despite the common expectation that large font size would provide ad-434 
vantages for recognition similar to higher resolution. This is because map text 435 
that contains characters with larger font size typically shows wider character 436 
spacing, which makes processing this text label very difficult independently on 437 
resolution (Section 3.3). The recognition results of each group in Section 5 will 438 
demonstrate the impact of the map properties discussed in this article on the 439 
recognition accuracy. 440 

Group 1 “suitable” (with high suitability for text recognition):  441 
These are mostly clear and clean (unblurred and saturated) text labels with 442 
characters that are in either common, uncommon, or stenciled fonts, do not 443 
overlap with other map features, are not surrounded by or close to groups of 444 
non-text features, are only slightly curved or multi-oriented, or have regular or 445 
slightly wider (than usual) character spacing (Figure 19).  446 

Group 2 “processable” (with moderate suitability for text recogni-447 
tion): 448 



These are text labels that are slightly distorted, moderately curved, or may be 449 
surrounded by or close to (but not overlapping with) one or more non-text ob-450 
jects similar in size compared to a character (e.g., tree symbols) (Figure 20).  451 

Group 3 “unsuitable” (with low suitability for text recognition): 452 
These are text labels with characters that overlap with non-text objects (Figure 453 
21), are significantly curved16 (Figure 22), or have wide character spacing (Fig-454 
ure 23).  455 

    456 

  457 

  458 
Figure 19. Example labels that are highly suitable for text recognition (Group 1). 459 

                                                        
16 A word that deviates more than 30% from a straight label (Chiang and Knoblock, 2014) 



   460 

  461 
Figure 20. Example labels that are in noisy areas where nearby non-text symbols 462 
(e.g., trees, terrain features, circular symbols) could mislead the text detection and 463 
recognition algorithms (top), are slightly distorted or moderately curved (bottom) 464 
(Group 2). 465 

    466 

  467 

  468 
Figure 21. Example labels that overlap with other feature layers (Group 3). 469 

 470 



Figure 22. An example text label that deviates more than 30% from a straight 471 
label (Group 3). 472 

 473 
Figure 23. An example label that has a wide character spacing (Group 3). 474 

4.3. A Brief Description of the Text Recognition Method Used 475 
In order to conduct the experiment we used an open source text recognition 476 
tool, Strabo, developed in our previous work (Chiang and Knoblock, 2014)17 477 
that has been tested with a variety of map types (Chiang et al., 2014; Fernandes 478 
and Chiang, 2015; Honarvar Nazari et al., 2015). Strabo is a semi-automatic 479 
tool that can be trained by a user for processing a map of a certain type for text 480 
recognition. Strabo has two main components: (1) A text detector that exploits 481 
cartographic labeling principles to identify text pixels, groups the identified 482 
text pixels into characters, and then merges characters into text strings, and (2) 483 
A text recognizer that automatically determines the orientation of each 484 
detected string using a skew detection algorithm, rotates the string to the 485 
horizontal direction, and then uses Tesseract-OCR to convert the horizontal 486 
labels to machine-readable datasets. A detailed technical description of Strabo 487 
can be found in our previous publication (Chiang and Knoblock, 2014).  488 

Recent efforts on integrating the text recognition capabilities in Strabo with a 489 
GIS (Chiang et al., 2014; Fernandes and Chiang, 2015) attempt to establish an 490 
end-to-end map digitization process from text label detection to OCR to result 491 
curation within a single software platform. This direct transition eliminates the 492 
need for manual data export/import procedures between GIS and OCR soft-493 
ware and facilitates a broader use of such technologies in applied research (e.g., 494 
extracting historical location names from maps to better understand landscape 495 
conversions). 496 

To train Strabo, the user delineates an example area that contains a map label. 497 
Then Strabo detects text pixels in the example area and learns the colors that 498 
represent text in the map.18 In this experiment, since the text layers are primar-499 
ily in black, we did not need to train Strabo. We used manually identified color 500 

                                                        
17 https://github.com/spatial-computing/strabo-command-line-pub 
18 Details of Strabo training steps and demonstration videos can be access from http://spatial-
computing.github.io/#projects 



thresholds to extract the black layer from the Ordnance Survey maps. We used 501 
an automatic color binarization method (Bradley and Roth, 2007) to extract 502 
the black layers from the other test maps to save manual effort. Both the man-503 
ual and automatic color binarization methods generated clear text layers.  504 

In this comparative study we used parameter settings for running processes in 505 
Strabo as suggested in Chiang and Knoblock (2014) without parameter tuning 506 
for each test map, as follows: 507 

- Two text pixels can only be connected to one another if they are in direct ad-508 
jacency. 509 

- A character can only be connected to another character (for constituting a text 510 
label) if the ratio of sizes between the two characters (larger character divided 511 
by the smaller character) is less than two. The size of a character refers to the 512 
character width or height whichever is larger. 513 

- In a text label, the space between two connected characters is less than 1/5 of 514 
the size of the larger character. 515 

- A text label that is curved and deviating more than 30% from a straight label 516 
(i.e., 234 degrees) will be broken into shorter labels for recognition.  517 

As mentioned, the above steps in Strabo did not require training. For character 518 
recognition, we used the Tesseract-OCR engine with its default training data 519 
for English script without any additional training on the map font. To demon-520 
strate the impact of pure map characteristics on text recognition, we did not 521 
use a dictionary to post-correct the results. 522 

5. Experimental Results and Discussion 523 

We manually transcribed text labels in the test maps and identified their suita-524 
bility for text recognition (i.e., groups) to create the ground truth for validating 525 
the experiments.19 The 15 test areas from the six map products of various types 526 
contain a total of 5,700 characters. The overall character-level precision, recall, 527 
and F-Score (the harmonic mean of precision and recall) for the original reso-528 
lution were 37.32%, 61.79%, and 46.53%, respectively. All three measures 529 
dropped when the image resolution was reduced (Figure 24). Precision, recall, 530 

                                                        
19 Test maps and ground truth are available at: https://github.com/spatial-computing/map-ocr-
ground-truth 



and F-Score dropped with decreasing resolution (e.g., the F-Score decreased by 531 
11.98% from the original to the medium resolution and by 5.08% from the me-532 
dium to the lowest resolution). The F-Score dropped to a mere 0.28% when the 533 
image was resized to 17% of the original dimensions. Recall dropped sharply 534 
from 61.79% to 42.47% from the original to the medium resolution. The main 535 
reason for this observation is that after the first bicubic resampling, the resolu-536 
tion of every test map was lower than 300 DPI, which represents a critical 537 
benchmark for OCR (See Section 3.5) in general. Furthermore, resampling in-538 
troduces noise that reduces graphical quality such as character clarity. This 539 
type of noise is similar to the type of error that can be introduced during the 540 
original sampling stage (scanning). Also, if the resampling process incorporates 541 
a lossy compression algorithm, the medium- and low-resolution images would 542 
show even nosier character representations and would have a lower recognition 543 
rate.  544 

Figure 25 shows two example results. In these instances, Strabo detected the 545 
text locations correctly at all resolution levels, but Tesseract-OCR could not 546 
recognize some of the characters in the medium- and low-resolution images. 547 
Comparing the two cases, although “Wolsey” has a wider character spacing it 548 
has a cleaner representation (fewer smudges and bleedings) than “MADISON” 549 
in the original image. Therefore, when the image resolution was reduced to less 550 
than 300 DPI, the OCR tool showed a better recognition result for the down-551 
sampled text label “Wolsey” than for “MADISON”.  552 



 553 
Figure 24. Experimental results by image resolution level 554 

Table 2 shows the character-level precision, recall, and F-Score for each char-555 
acter group (groups 1-3; see Section 4.2) at each of the tested image dimen-556 
sions, including the original, medium, and low resolutions. Group 1 contains 557 
2,024 characters (35.51% of the total number of characters). Group 2 contains 558 
896 characters (15.72% of the total number of characters). A closer look at the 559 
results for Group 2 reveals that non-text objects near existing words could be 560 
incorrectly detected as characters and hence a text label could be incorrectly 561 
broken into several parts (Figure 26). Also, it should be noted that the F-Score 562 
of Group 2 in the original resolution was close to the F-Score of Group 1 in the 563 
medium resolution. This illustrates that an improperly prepared map scan 564 
could largely reduce the prospect of using an automatic/semi-automatic map 565 
processing tool even if the map labels were clean, clear, and noise-free. In 566 
addition, when the resolutions were lower than 300 DPI, non-text objects were 567 
more likely to be grouped with nearby characters, so the precision of Group 2 568 
was even lower than Group 3 in both the medium and low resolutions. 569 
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The third group contains 2,780 characters (48.77% of the total number of char-570 
acters). In the experiment, this group included mostly text labels that overlap 571 
with (or touch) other map features (e.g., lines) or appear significantly curved. 572 
Strabo employed a recent method for detecting text labels overlapping with 573 
other features (Honarvar Nazari et al., 2016), but such overlaps still pose a ma-574 
jor difficulty for OCR. As expected, Group 3 had the lowest values for recall and 575 
F-Score across the three image resolutions. 576 

 577 
(a) The label “MADISON” in the test map of Florida 578 

 579 

Original
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Low
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Original
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(b) The label “Wolsey” in the test map of South Dakota 580 

Figure 25. Comparison of text recognition results for the same text label at three dif-581 
ferent image resolutions for two cases. The color images (top in (a) and left in (b)) show 582 
the map labels. The purple (a) and green (b) areas in the result images (bottom in (a) 583 
and right in (b)) are the Strabo-identified text locations. The black characters on top of 584 
the identified locations are the recognition results. 585 

Table 2. Experimental results by character groups and image resolutions. 586 

Image Dimension and Character Groups  Precision Recall F-Score 

165% of the original image dimensions 

Group 1 41.31% 51.55% 45.87% 

Group 2 24.56% 41.02% 30.72% 
Group 3 28.82% 21.07% 24.34% 
132% of the original image dimensions 
Group 1 44.74% 47.65% 46.15% 

Group 2 27.84% 38.41% 32.29% 

Group 3 32.71% 23.18% 27.13% 

Original image (original resolution)    

Group 1 47.55% 83.50% 60.60% 

Group 2 29.57% 71.65% 41.87% 

Group 3 32.05% 42.81% 36.65% 

66% of the original image dimensions (medium resolution) 
Group 1 37.32% 57.91% 45.39% 

Group 2 20.46% 46.43% 28.41% 

Group 3 26.51% 29.96% 28.13% 

50% of the original image dimensions (low resolution) 
Group 1 31.30% 40.51% 35.31% 

Group 2 16.84% 31.92% 22.05% 

Group 3 23.07% 20.79% 21.87% 

33% of the original image dimensions  

Group 1 19.02% 4.34% 7.07% 

Group 2 4.28% 0.26% 0.49% 



Group 3 9.09% 1.04% 1.86% 

17% of the original image dimension  

Group 1 1.67% 0.06% 0.13% 

Group 2 0.00% 0.00% 0.00% 

Group 3 3.65% 0.26% 0.48% 
 587 

  588 
(a) The detected text labels (text is part of the black layer) in purple boxes and the 589 
recognition results (the text labeled inside the purple boxes in Arial) 590 

 591 
(b) Four of the detected text areas 592 
Figure 26. A noisy text area (Group 2) and the text detection and recognition results 593 
for these characters and strings are shown. 594 

Further, when the image dimension was increased (132% and 165%), the 595 
recognition results showed a decrease in all accuracy measures compared to 596 
the results from the original resolution. This shows that after scanning, we 597 
could not add more information (i.e., to increase the DPI) to the map image for 598 
improving the recognition results (by upscaling the image). Table 2 also shows 599 
that when the image resolution dropped to 17% of the original resolution (less 600 
than 100 DPI), we could not correctly detect any character in Group 2. This was 601 
due to the fact that beyond 100 DPI, most of the characters became too blurry 602 
to be detected after the bicubic resampling.  603 

Figure 27 shows some example recognition results for text labels from every 604 
group at the three different resolutions. The word “Milk” was only correctly 605 
recognized in the original resolution. The uncommon character style of “Milk” 606 
resulted in poor OCR results when the resolution decreased. The curved words 607 



“Ft. Assinaboine” and “Missouri” were broken into smaller parts during the 608 
text detection steps, so only parts of them were recognized by OCR. Moreover, 609 
curved strings were difficult for OCR to process. As an example, all characters 610 
except one of the detected label “Ft. Assina” in the medium resolution were 611 
recognized incorrectly. As can be seen in Figure 27(c), when the resolution was 612 
reduced, Tesseract-OCR was unable to correctly segment individual characters 613 
in a detected label because the character spacing was too small. For example, 614 
the word “Caroll” was recognized as “cmau” in the low-resolution image be-615 
cause Tesseract-OCR grouped some adjacent characters as single characters. 616 
Also, the characters “Ri” in the lower occurrence of the label “River” were in-617 
correctly segmented into the two characters “IN”. The problem of erroneous 618 
character segmentation becomes more problematic when a word overlaps with 619 
other map features. For example, the characters “Ri” in the top occurrence of 620 
the label “River” were incorrectly segmented into the three characters “J E” in 621 
the original resolution because of the grid line between “R” and “i”. When the 622 
resolution decreased to medium, the characters “Ri” were segmented into “Rii” 623 
because the number of pixels between “R”, the gridline, and “i” were smaller 624 
(than in the original) and hence the space character was not in the recognition 625 
result. 626 

As can be seen in Table 2, even when a map was carefully prepared (scanned) 627 
such that high levels of image quality could be warranted, significant challeng-628 
es remain in recognizing map text in a fully automated setting due to the com-629 
plexities and variations in map properties. These graphical properties, here of 630 
characters and text labels, could even vary considerably across one map sheet, 631 
and the performance of map processing techniques directly relates to such 632 
properties. Such variations would remain hidden if accuracy would only be 633 
assessed over all labels as a whole without distinguishing between levels of 634 
graphical quality, feature representations, and map products. If incorporated 635 
into accuracy assessments this knowledge provides a more objective basis to 636 
estimate the suitability of a considered map for automatic processing (e.g., text 637 
recognition). For example, if the vast majority of characters or text labels in the 638 
map of interest belong to Group 1 and the resolution satisfies basic benchmarks 639 
for robust OCR performance the user could expect a good potential for auto-640 
mated or semi-automated map processing. In contrast, if most characters 641 
would be categorized as Group 3 the potential for automation would be ex-642 
pected to be very low without further tuning or training. This potential would 643 
be expected to further decrease for lower levels of image resolution.  644 



   645 
(a) Original resolution           (b) Medium resolution (66%) 646 

 647 
(c) Low resolution (50%) 648 
Figure 27. Example text labels and their recognition results (text labels in red) across 649 
the three test image resolutions. The images of the medium and low resolution are 650 
enlarged here to better illustrate the results. The labels “Milk” (deformed characters), 651 
“River” (top, overlapping with a grid line), “Ft. Assinaboine” (curved over 30%), “Mis-652 
souri” (overlapping with the grid line and curved over 30%) belong to Group 3. The 653 
label “River” (bottom right, uncommon font) belongs to Group 2 and the label “Carroll” 654 
is an example of Group 1. 655 

Overall, in the described experiments additional OCR training and incorporat-656 
ing and tuning symbol recognition algorithms to remove non-text objects 657 
would likely improve the recognition accuracy in Groups 1 and 2 but still re-658 
quire user intervention to some degree. In Group 3, additional text/graphics 659 
separation techniques and dictionaries could be used to recover overlapping 660 
text in the OCR step, but this would require great amounts of effort by the user. 661 
For example, in a string “House”, if the character “s” was removed due to over-662 
lapping features and “Hou e” was recognized, a dictionary containing the word 663 



“House” could facilitate the reconstruction of the full word. Finally, 664 
crowdsourcing approaches such as CAPTCHA20 could be used to scale up the 665 
result curation task and make it possible for an organization or user to process 666 
large volume map series with reasonable degrees of efficiency. 667 

6. Summary and Outlook 668 

This article discussed a variety of criteria to evaluate the suitability of scanned 669 
and digitally produced maps for automatic map processing using text recogni-670 
tion as the target application. This discussion fills an important gap in the liter-671 
ature which to-date has not seen an explicit and systematic assessment of the 672 
potential impacts of graphical quality issues on automatic or semi-automatic 673 
map processing tasks. The usefulness of the map/text criteria was demonstrat-674 
ed in an extensive experiment to test a common text recognition tool for maps, 675 
Strabo, for different map products at varying image resolutions. The results for 676 
each resolution were assessed, separately, for three groups of text representa-677 
tions defined based on the graphical characteristics of map text. This study is 678 
meant to support potential users of map processing tools to better understand 679 
(1) whether or not the map images of interest are suitable candidates for higher 680 
degrees of automation in map processing, (2) how much user intervention 681 
would be required and (3) how much variation in methods performance and 682 
thus in intervention needs can be expected. We view this article as a first step 683 
to systematically evaluate the potential to successfully process different maps 684 
and map series using an automatic or semi-automatic recognition system. Such 685 
a state-of-the-art introduction manual, here focused on text recognition, will 686 
help users interested in applying digital map processing systems to better 687 
understand current possibilities from the perspective of graphical quality and 688 
inherent uncertainty. This discussion could be further extended to other pro-689 
cessing techniques such as line detection or symbol recognition in scanned 690 
maps. 691 
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