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ABSTRACT
With large amounts of digital map archives becoming available,
the capability to automatically extracting information from histor-
ical maps is important for many domains that require long-term
geographic data, such as understanding the development of the
landscape and human activities. In the previous work, we built a
system to automatically recognize geographic features in historical
maps using Convolutional Neural Networks (CNN). Our system
uses contemporary vector data to automatically label examples of
the geographic feature of interest in historical maps as training
samples for the CNN model. The alignment between the vector
data and geographic features in maps controls if the system can
generate representative training samples, which has a significant
impact on recognition performance of the system. Due to the large
number of training data that the CNN model needs and tens of
thousands of maps needed to be processed in an archive, manually
aligning the vector data to each map in an archive is not practical.
In this paper, we present an algorithm that automatically aligns
vector data with geographic features in historical maps. Existing
alignment approaches focus on road features and imagery and
are difficult to generalize for other geographic features. Our al-
gorithm aligns various types of geographic features in document
images with the corresponding vector data. In the experiment, our
alignment algorithm increased the correctness and completeness
of the extracted railroad and river vector data for about 100% and
20%, respectively. For the performance of feature recognition, the
aligned vector data had a 100% improvement on the precision while
maintained a similar recall.
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1 INTRODUCTION
Historical maps store abundant and valuable information about the
evolution of natural features and human activities, such as changes
in hydrography, the development of railroad networks, and the ex-
pansion of human settlements. Such knowledge represents a unique
resource that can be extremely useful for researchers in the social
and natural sciences to better understand how human and environ-
ment have evolved over time. A number of organizations scanned
historical maps and stored them in digital archives. Many existing
geographic feature recognition systems [1, 4–6, 8, 10, 11, 13, 15, 21]
help convert the information in maps into a structured format by
training machine learning models. However, one persistent limita-
tion in current recognition systems is the need of the manual step
for labeling or sampling to provide training data. A recognition
process with such manual input requirements does not scale well
for processing large numbers of maps stored in digital archives
(e.g., the USGS Historical Topographic Series contains over 180,000
scanned maps).

In our previous work, we built a prototype of a fully automatic
geographic-feature-recognition system. The system eliminates the
manual step by exploiting the fact that the map content usually
changes gradually between map editions. For example, the geome-
try of railroads in a raster map in 2001 should be similar or the same
as the geometry of contemporary railroad data (railroad vector data).
Hence, our system uses contemporary data (vector data) to find the
locations of the geographic feature of interest in historical maps
automatically. If the vector data are aligned with the geographic
features in maps, the system can generate representative training
samples (images of geographic features) in which the geographic
feature is at the center of the sample. Because the vector data and
maps were generated in different years and from different sources,
the vector data do not always align with the geographic feature in
historical maps. Some training samples generated by using the vec-
tor data contain the geographic feature on the edge of the images or
no geographic feature. As a result, the training samples would not
have a consistent representation of the geographic feature. In this
paper, we present an automatic alignment algorithm that corrects
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the misalignment between vector data and raster maps to provide
representative training data for the geographic feature recognition
process.

There are some existing algorithms that solve the misalignment
problem between vector data and other types of geospatial data. The
algorithms can be categorized into three groups: vector-and-vector-
data alignment, vector-and-raster-data alignment, and raster-and-
raster-data alignment. Our work falls into the category of vector-
and-raster-data alignment. Most existing methods dealing with
vector-and-raster-data misalignment problem work on aligning
a specific geographic feature (e.g., roads) in imagery and vector
data [2, 3, 19, 20], while our algorithm can align various types of
geographic features in document images (maps) with vector data. In
addition, the goal of our alignment algorithm is to find the accurate
local positions of geographic feature to generate representative
training samples for the recognition. In contrast, the goal of other
methods is to improve the global positional accuracy. For example,
Chen et al. [2] built the algorithm to conflate road vector data and
roads in raster maps. Their method aligns points in vector data with
the intersections of roads in maps. However, their method cannot
guarantee that the line segment between two intersections aligns
with the road on the map.

In this paper, we present an alignment algorithm that automati-
cally aligns various types of geographic features in raster maps with
the corresponding vector data from different data sources. The algo-
rithm is based on two assumptions. The first assumption is that the
misaligned vector data are close to the corresponding geographic
features in maps. Based on this assumption, our algorithm searches
the geographic feature of interest around a small neighborhood
from the vector data. The second assumption is that nearby points
in the vector data of linear geographic feature should have a similar
or the same type of misalignment (the misalignment orientation
and offsets). The middle figure on the top row in Figure 1(a) shows
an example of the assumptions. (Figure 1 shows the workflow of
our algorithm, which will be explained in the third section.) The
purple line with blue dots (points in the vector data) is a segment
of railroad vector data. The black line with the cross next to the
purple line is a segment of a railroad. The purple line does not align
with the black line, but it is very close to the black line, and all of
the points in the vector data should be shifted towards east.

The contribution of this paper is an algorithm that automatically
aligns linear vector data with multiple geographic features in raster
maps. The aligned vector data enable the recognition system to
generate representative training samples automatically to achieve
accurate recognition results.

2 RECOGNITION SYSTEM CONTEXT
Our fully automatic geographic feature recognition system consists
of three main components: data generation, recognition, and post-
processing. Figure 2 shows the architecture of the system.

In the first component, the system generates training data with-
out the manual work by using the contemporary vector data. The
vector data guides the system to find the locations of the geographic
feature of interest, and then the system generates the training data
by cropping the map using a sliding window along the vector data.
In the recognition process, the system employs the Convolutional
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(a) The workflow of first two steps of the alignment algorithm

(b) The workflow of the third step of the alignment algorithm

Figure 1: The workflow of the vector data alignment algo-
rithm

Neural Networks (CNN). CNN models have shown impressive per-
formance in image recognition [9, 16, 17]. The advantage of using
the CNN model is that its generality compared to other machine
learning models for image recognition like the Support Vector Ma-
chine (SVM). The CNN model can recognize different geographic
features or the same geographic feature represented by different
symbols without explicitly defining different feature descriptors to
represent the geographic feature of interest. It can learn the feature
descriptors by itself during the training. This advantage also makes
processing large map archives efficient without manually defin-
ing different features to present different geographic features. In
the post-processing process, the system employs a priori semantic
knowledge of a particular type of geographic feature to improve
the recognition results. For example, railroads should be a long



Figure 2: The workflow of the geographic feature recogni-
tion system

(a) The vector data (green) before interpolation

(b) The vector data (green) after interpolation

(c) The aligned vector data (blue) after interpolation

Figure 3: An example of interpolating points

continuous line. The system discards the recognition result if it is a
short segment.
3 VECTOR DATA AND RASTER MAPS

ALIGNMENT ALGORITHM
There are three steps in our alignment algorithm. Figure 1 shows
the flowchart of the algorithm. Figure 1(a) shows the first two steps
of the algorithm, and Figure 1(b) shows the third step. The figures
next to inputs and outputs are examples of them. The first step is
foreground extraction. The algorithm extracts the foreground in the
sub-image, which includes the geographic feature of interest and
could also contain other geographic features or map background.
The second step is shift checking. The algorithm checks if the center
pixel is the foreground pixel and calculates the closest foreground
pixel along each direction. The last step is shift-direction and dis-
tance determination.

For the purpose of having a small neighborhood in which the
transformation for correcting misalignment is consistent for points
in the neighborhood, the algorithm generates interpolated points
for each line segment in the vector data. Our algorithm uses the
vector data after interpolation to crop sub-images as the inputs for
the alignment algorithm. Our algorithm uses a length threshold
to determine if the algorithm should interpolate points for a line
segment. If the length of the line segment in the original vector data
is longer than a length threshold, the algorithm interpolates points
between the begin and the end points of a line segment to keep the
distance between the begin and end point short. Then the system
groups a certain number of points as a neighborhood along the
geographic feature of interest. The neighboring points of a point
are the ones in the same neighborhood. Figure 3 uses railroads as
an example to illustrate why and how our algorithm interpolates
points in a line segment. Red dots in Figures 3(a), 3(b), and 3(c)
are points in the vector data. Figure 3(a) and 3(b) show the vector
data in green before and after interpolation respectively. Although
the points in Figure 3(a) are on the railroads, the vector data has
the misalignment problem because the railroad is not a straight
line. Our algorithm interpolates more points on the line segment.
Figure 3(c) is the alignment vector data in blue after processed by
our alignment algorithm using the interpolated vector data.
3.1 Foreground Extraction
The first step of the vector data alignment is extracting foreground
pixels in the sub-image cropped by each point as the center within
a window. The system uses the GrabCut algorithm without man-
ual intervention to extract the foreground. The original GrabCut
algorithm [14] is an iterative, interactive algorithm. The only hu-
man intervention in GrabCut is in initialization. GrabCut requires
users to label the foreground pixels at the beginning. After initial-
ization, GrabCut models the pixels as a graph. In each iteration,
GrabCut uses a min-cut algorithm to segment the graph and an
entropy function to calculate loss. The iteration ends when the en-
tropy function converges. Our algorithm automatically initializes
GrabCut by providing samples of the foreground and background.

Our algorithm initializes foreground pixels automatically by
detecting the color range of the geographic feature of interest. If the
pixel color is in range, the algorithm labels the pixel as a foreground
pixel for initializing GrabCut. There are three steps in the color
detection method. In the first step, the algorithm divides the HSV



color space into continuous ranges. We call each color interval a
bin. In the second step, the algorithm calculates the number of
pixels in each bin with an increasing buffer size of the vector data.
In the third step, the algorithm calculates the growth rate of each
bin. The growth rate is the difference between the number of pixels
in the current bin and the number of pixels in last corresponding
bin divided by the number of pixels in the last corresponding bin.
For example, the growth rate of the black bin in the 3-pixel buffer
in Figure 4(a) is the difference between the number of pixels in
the black bin in the 3-pixel buffer and the number of pixels in the
black bin in the 1-pixel buffer divided by the number of pixels in
the black bin in the 1-pixel buffer. The algorithm chooses the bin
with the highest growth rate for each buffer size. The algorithm
detects the color range of the geographic feature of interest by
analyzing the change of the bin with the highest growth rate. The
assumption is that the vector data should be near the geographic
feature of interest in the map. The bins with the highest growth
rate in the first few buffers should be the ones containing the color
of the geographic feature of interest. After the first few buffers, the
buffers extend to the background or other geographic features, so
the bin with the highest growth rate changes. The algorithm uses
the range of the bin with the highest growth rate in the first few
buffers as the color range of the geographic feature of interest to
initialize GrabCut.

We use railroads as an example to illustrate how the algorithm
detects the color of the geographic feature of interest. The algorithm
divides the HSV color space into 15 bins. They are red, orange,
yellow, chartreuse green, green, spring green, cyan, azure, blue,
violet, magenta, black, gray, and white. Figures 4(a) - 4(d) show the
growth rate charts of first four buffers. In practice, the algorithm
removes the bins whose number of pixels is smaller than 1% of
the total number of pixels. Figure 4(e) is an example of a railroad
segment. The white lines in the left figure in Figure 4(f) is the 1-
pixel buffer, and the right figure in Figure 4(f) shows the pixels
in the left figure within the 1-pixel buffer. Figures 4(f) - 4(j) show
that the buffer gradually covers the entire railroad when buffer size
increases from 1 to 5 pixels and then extends to the area surrounding
the railroads when the buffer size is larger than 5 pixels. In Figure
4(a) - 4(c), the black bin has the highest growth rate. When the
buffer size is 7-pixel, Figure 4(i) shows that the buffer extends to the
red area, the red bin has the second highest growth rate in Figure
4(c). When the buffer is 11-pixel, the bin with the highest growth
rate becomes red. The bin with the highest growth rate in first three
buffer is the color range of railroads.

3.2 Shift Checking
This shift-checking step consists of two parts. The first part is check-
ing if the center pixel of the cropped image (i.e., the location of
a point) is a foreground pixel. In the second part, the algorithm
searches foreground pixels in eight directions. The eight direc-
tions are north, south, west, east, northwest, northeast, southwest,
and southeast to the center pixel. Checking all eight directions
makes sure that the algorithm can find foreground pixels. The more
directions the algorithm checks, the probability of finding a corre-
sponding foreground pixel is higher. In the experiment, we found
that eight directions are enough to find a corresponding foreground
pixel for alignment. If there are foreground pixels along a direction,

the algorithm saves the distance between the closest foreground
pixel to the center pixel as the shift distance along that direction.
Figure 5 uses railroads as an example to show how the shift check-
ing works. Although the center pixel is a foreground pixel, the
algorithm still needs to search foreground pixels along each direc-
tion, because the foreground pixels identified from GrabCut could
be pixels of another geographic feature or map background. Figure
6 shows an example of this case. Figure 6(a) is the cropped image
as the input for the GrabCut algorithm. The red point on Figure
6(a) is the center of the image window. The center is at a elevation
contour instead of the railroad. Figure 6(b) is the foreground ex-
tracted by GrabCut. The red circle points out the center pixel of
the foreground image, which is a pixel of the elevation contour.

3.3 Shift Direction and Distance Determination
The algorithm uses points in the vector data and their neighbors to
decide the shift direction and shift distance for alignment. Because
of the assumption that a point should have a similar or the same type
of misalignment as its neighboring points, considering neighboring
points can help the algorithm transform the point correctly when it
has several transformation options. Figure 8(a) shows an example
about the assumption. The green line is the vector data, and points
in the vector data are in the red in Figure 8(a). The black line
with crosses next to the vector line is a segment of railroads, the
geographic feature of interest. If the point in the blue circle is the
point that needs to make a transformation, the shift direction is
West according to its neighbors. The shift option provided by a
neighborhood is the most frequent direction (MFDir) and the most
frequent distance (MFDis). We define the most frequent direction
(MFDir) as the direction towards which the majority neighboring
points have the shortest shift distance. The algorithm finds MFDir
by choosing the direction towards which the most neighboring
points have the minimum shift distance. For example, there are five
points, a, b, c, d, and e in Figure 7. The point c in red is the target
point, the remaining points are its neighbors. The number on each
arrow is the shift distance toward each direction. The direction
with the shortest shift distance for a, b, and e is West, while the
shortest shift distance for d is Southwest. The MFDir for point c
is West in this case. For MFDis, the algorithm uses a subset of the
neighboring points in which their shift direction with the shortest
shift distance is MFDir. The algorithm chooses the shift distance
that most points in the subset move towards MFDir as MFDis. In
Figure 7, the subset is a, b, e. The shift distance of a, b towards West
is three pixels, while the shift distance of e towards West is five
pixels. In this case, MFDis for c is three pixels.

There are four alignment conditions. The first condition is that
the difference between the shift distance of a point towards MFDir
and its MFDis is smaller than a length threshold. The length thresh-
old is set according to the assumption that the vector data is near
the geographic feature of interest. If the difference is larger than the
length threshold, the direction could not be the correct alignment
direction. If the difference is smaller than the length threshold, the
algorithm moves the point MFDis towards MFDir. Figure 8(a) is an
example of this condition. The red point in the blue circle is on an
elevation contour pixel. MFDir for the point is West. The shift dis-
tance of the point towardsWest is similar to MFDis. The point shifts
MFDis towards West. If the difference between the shift distance of



(a) Histogram of the growth rate in the 3-pixel buffer (b) Histogram of the growth rate in the 5-pixel buffer

(c) Histogram of the growth rate in the 7-pixel buffer (d) Histogram of the growth rate in the 11-pixel buffer

(e) An example of a railroad seg-
ment

(f) The left figure is an example of the 1-pixel buffer (the white line) on the rail-
road segment. The right figure shows the pixels within the 1-pixel buffer of the
left figure.

(g) An example of the pixelswithin
the 3-pixel buffer

(h) An example of the pixels
within the 5-pixel buffer

(i) An example of the pixels within
the 7-pixel buffer

(j) An example of the pixels within
the 11-pixel buffer

Figure 4: An example of color detection of railroads



Figure 5: An example of the shift checking process

(a) A example image for the
GrabCut algorithm

(b) The foreground of the left fig-
ure extracted by the GrabCut al-
gorithm

Figure 6: An example of the center pixel not on geographic
feature of interest

the point towards MFDir andMFDis is larger than the threshold, the
point cannot shift towards MFDir. The rest of three conditions deals
with this situation. The second kind of alignment condition is that
the point is on the foreground pixel. In this case, the system keeps
the point in the original position. Figure 8(b) is an example of this
condition, where MFDir is West. The point is the red point in the
blue circle. The algorithm cannot find a foreground pixel towards
West, so the algorithm keeps it at the original position. The third
condition is that the point is on the background pixel, and there is
no foreground pixel in the sub-image. The algorithm removes the
point. Figure 8(c) is an example of rivers about this situation where
the contemporary vector data contain newly built canals while the
historical maps do not. In fourth alignment condition, the point
is on the background pixel, and there are foreground pixels in the
sub-image. The algorithm moves the point towards the direction
with the shortest shift distance. Figure 8(d) is an example of this
case. The neighbors of red railroad point in the blue circle are on
the railroads, so its MFDis is set to infinity (i.e., its neighbors do not
have foreground pixels in the eight directions). Hence the point in
the blue circle shifts towards West with the shortest shift distance.
4 EXPERIMENT
We tested our alignment algorithm on railroad and river geographic
features in a large-scale map. Our goal to align vector data is to
improve the geographic feature extraction performance. For that
purpose, we tested the performance of our recognition system on
railroads using the vector data processed by the alignment algo-
rithm and compared the performance with other two groups of
vector data. One group is the original vector data downloaded from
US Census, the other group is the manually aligned vector data.

4.1 Data Preparation
We downloaded the map from the USGS website. The location of
the map is Bray in California circa 2001. We downloaded the 2016
railroad and river vector data from the US Census website.

The test map contains rich and diverse graphical conditions,
which is used to test the alignment and extraction performance
with a variety of graphical variations. For example, the geographic
features around the feature of interest are diverse. Figure 9 shows
the diverse neighborhood around railroads. In Figure 9, from left to
right, they are elevation contours, gravel roads, regular roads, and
rivers around railroads. The second aspect is that the map contains
diverse geographic features. There are railroads, elevation contours,
rivers, roads, trails, highways, and buildings on the map. Figure 10
shows examples of some geographic features in the map. From left
to right, they are railroads, elevation contours, rivers, gravel roads,
and regular roads.

In the geographic feature alignment experiment, for the pur-
pose of having small neighborhoods and fitting curved features
in the map, the algorithm interpolated points in the vector data.
The vector data downloaded from US Census did not have a fixed
distance between two points in a line segment. The distance of a
segment after interpolation was around 50 pixels in the map. Our al-
gorithm grouped 10 points in the vector data as a neighborhood. In
another word, each point had nine neighboring points. For the sub-
image, the input for alignment algorithm, the algorithm cropped
sub-images within the 47*47-pixel window. The center of each sub-
image was a point in the vector data. To have the geographic feature
of interest in the sub-image, we choose the 47*47-pixel window
that was enough to include the geographic feature of interest in
the sub-images.

To generate training data containing railroads for the CNN
model, the system cropped sub-images along the lines in the map
aligning with the vector data with a one-pixel step. The size of
training samples is 47*47. In the experiment, we tested on three
groups of training data. The training data containing railroads were
generated from three sets of vector data. The training data in the
first group was generated by the vector data downloaded from the
US Census website (the original group). The training data in the
second group was generated by the vector data processed by our
alignment algorithm (the aligned group). The training data in the
third group was generated by vector data manually aligned with the
railroads (the ground truth group). Samples in which the railroad is
at the center are called positive samples. Otherwise, they are called
negative samples.
4.2 Vector Data Alignment Experiment and

Analysis
We tested our alignment algorithm on railroads and rivers. We used
correctness and completeness proposed by Heipke et al. [7] as the
metrics to evaluate the alignment performance. The definition of
correctness is the length of true positives divided by the sum of
the lengths of true positives and false positives. The definition of
completeness is the length of true positives divided by the sum
of the lengths of true positives and false negatives. The top figure
in Figure 11 shows the true positives and false positives in the
correctness, and the bottom figure in Figure 11 shows the true
positives and false negatives in the completeness. The maximum of



Figure 7: An example to illustrate the most frequent direction (MFDir) and the most frequent distance (MFDis)

(a) (b) (c) (d)

Figure 8: Examples of alignment conditions

Figure 9: Examples of the diverse background around rail-
roads

Figure 10: Examples of geographic features in the map

the correctness of both railroads and rivers was 100%. The maximal
value of the completeness for railroads was 82.89%, and for rivers
was 98.06%, because the original vector data did not cover the entire
geographic feature.

Tables 1 and 2 show the alignment performance of railroads
and rivers separately. We evaluated the performance of alignment
using different buffer sizes on the ground truth. The results from
increasing the buffer from 1-pixel to 7-pixel showed how far away
the aligned vector data were from the center line of the geographic
feature. For example, the 3-pixel buffer indicates that the vector
data is within one pixel of the center line of the geographic feature.

From Table 1, we can see that the correctness and completeness
of the aligned vector data were more than twice higher than those of

Figure 11: An example of explaining correctness and com-
pleteness (The red line is the extracted result, the green line
is the reference.)

Table 1: The Alignment Performance of Railroads varied in
the buffer size from 1-pixel to 7-pixel

Buffer 1 3 5 7

Correctness Original 13.7% 22.9% 36.4% 45.4%
Aligned 63.8% 91.3% 93.7% 94.4%

Completeness Original 11.4% 18.0% 28.6% 37.2%
Aligned 24.1% 63.5% 67.2% 68.3%

Table 2: The Alignment Performance of Rivers varied in the
buffer size from 1-pixel to 7-pixel

Buffer 1 3 5 7

Correctness Original 40.0% 63.9% 68.3% 70.0%
Aligned 38.7% 80.4% 85.3% 87.7%

Completeness Original 54.6% 86.8% 91.0% 92.5%
Aligned 80.9% 91.4% 92.7% 92.8%

the original railroad vector data. The correctness of original vector
data was only 45.4% when buffer size was seven, which indicated
more than half of the original vector data was three pixels away
from the railroad center line. We could also see the same pattern
from the completeness of original vector data. The correctness and
completeness of aligned vector data had a large increase from the
1-pixel buffer to the 3-pixel buffer, which indicated most of the
aligned vector data was on the center line or one pixel away from
the center lines of railroads.



(a) An example of sharp
turns (The vector data are in
green. The red crosses are
points in the vector data.)

(b) An example of no rivers
on the map (The vector data
are in red.)

Figure 12: Examples of river vector data

From Table 2, the correctness of the aligned river vector data
increased about 15% compared to the correctness of the original
vector data. The correctness and completeness of both original and
aligned vector data had a large increase from the 1-pixel buffer to
the 3-pixel buffer, which indicates that most of the vector data were
on the center lines of rivers or 1 pixel away. The river vector data
had less misalignment problem than the railroad vector data. The
river correctness and completeness of the original vector data were
higher than correctness and completeness of the original railroad
vector data. The correctness of the aligned rivers vector data was
slightly lower than the correctness of aligned railroads vector data
because the length of each segment that we set cannot fit the sharp
curves in rivers. We set the length of each segment is around 50
pixels, which is not short enough to fit the curves along rivers.
Figure 12(a) shows an example with sharp turns. The red crosses
are points in the vector data. The completeness of original vector
data and aligned one were similar because the main misalignment
problem for rivers was that there were no rivers around the loca-
tions that the vector data covered. Figure 12(b) shows an example
of the problem. The red lines in Figure 12(b) are the river vector
data, which does not have corresponding features on the map.

Overall, our alignment algorithm achieved high correctness and
completeness. Figure 13 shows the misalignment examples where
our algorithm worked well. In Figure 13, red lines are the origi-
nal vector data, and green lines are the aligned vector data. The
first misalignment example is the vector data on the background
and close to the geographic feature of interest (Figure 13(a)). The
black line with crosses in Figure 13(a) is a railroad segment. The
second misalignment example is that some points in the vector
data are on another geographic feature (Figure 13(b)). The brown
lines in Figure 13(b) are elevation contours, and a part of the orig-
inal vector data locates on the contour lines. After applying the
alignment algorithm, the vector data in both examples aligned with
the railroad automatically. These two examples were solved by the
alignment condition in our algorithm that the difference between
shift distance and MFDis is within a distance threshold.

We categorize the alignment errors in the experiment into two
groups. The first group is that another geographic feature was
closer to the vector data than the geographic feature of interest.
Figure 14(a) shows an example of railroads about this case. The
left black line with crosses is a railroad segment, while the right
black line is a road segment. The original vector data in red is closer

(a) (b)

Figure 13: Examples of misalignment problems (The orig-
inal vector data are in red. The aligned vector data are in
green.)

(a) An example of the first
group of alignment error

(b) An example of the second
group of alignment error

Figure 14: Examples of alignment errors (The original vector
data are in red. The aligned vector data are in green)

to the road. The vector data in green aligned with the road after
implementing our algorithm. The reason for this misalignment was
that the alignment algorithm shifted points by finding the shift di-
rection with the shortest shift distance. The shift direction with the
shortest shift distance, in this case, was towards another geographic
feature, road. The second group is parallel lines. Figure 14(b) shows
an example of parallel railroads. Both vector lines moved to the
same railroad segment after applying the algorithm. The algorithm
did not consider points in the parallel line as neighbors. The algo-
rithm could be extended to detect the conflict considering the shift
directions of parallel lines.
4.3 Geographic Feature Extraction Experiment

and Analysis
We tested if the automatic alignment algorithm could improve
the performance of geographic feature extraction on railroads and
evaluated the extracted result using precision and recall. We did
three group of experiments. In both Tables 3 and 4, “original” means
the training data containing railroads was generated by the vector
data downloaded from the US Census, “aligned” is the group in
which the training data containing railroads was generated by the
vector data aligned by our alignment algorithm. In the “ground
truth” group, the training data containing railroads was generated
by the vector data manually aligned with railroads. We quantified
the quality of training data generated by the three sets of vector
data using correctness and completeness. Correctness indicates if
the center pixels of positive training samples are railroads, and
completeness indicates the diversity of positive training samples.
Table 1 shows the correctness and completeness of the original



Table 3: The performance of railroads extraction
Vector Original Aligned Ground Truth

Precision 20.25% 28.46% 36.81%
Recall 97.84% 95.09% 99.97%
F1 33.56% 43.81% 53.81%

Table 4: The performance of railroads extraction after post-
processing

Vector Original Aligned Ground Truth
Precision 29.30% 57.98% 71.84%
Recall 98.38% 92.36% 99.97%
F1 45.14% 71.23% 83.60%

(a) The extraction result
of the original (purple)
and aligned (green) group

(b) The extraction result
of the aligned (green) and
ground truth (blue) group

Figure 15: Examples of extraction results.

and aligned railroads vector data. In addition, the correctness and
completeness of ground truth railroad vector are 100%. The quality
of training data gets better with the order of the original, the aligned,
and the ground truth group.

In Table 3, the increase of precision indicates that the quality
of training data had improved the extraction result. The recall in
the aligned group was lower than the recall in the original group
because some railroad segments were misclassified as negatives
in the aligned group. Figure 15(a) is an example of this case. The
bottom layer is the map. The layer with the purple line is the
extraction result using the original vector data. The layer with
green line is the result using the aligned vector data. We found that
some railroad segments were not or partially recognized by the
system using the aligned vector data. Figure 15(b) shows an example.
The blue line in figure 15(b) is the recognition result in the ground
truth group, and the green line is the result from the aligned group.
Because of the partial recognition in the aligned group, the true
positives in the aligned group were less than the ones in the ground
truth group, and the false negatives in the aligned group were more
than the ones in the ground truth group. Overall, the recognition
performance of our system in the aligned group improved by 10%
in the F1 score.

Besides the increased precision, the extraction quality was bet-
ter when the training data more consistently represented the geo-
graphic feature (i.e., using the aligned vector data for labeling the
training samples). The width of extracted railroads in the original
group was much wider than the actual width of railroads on the
map, while the width of extracted railroads in aligned and ground
truth groupwas similar to the actual railroadwidth. Figure 16 shows

Figure 16: An example of the extraction result of the original
group (purple) and the aligned group (green)

(a) A sample with rail-
roads (47*47 pixels)

(b) A sample with
roads(47*47 pixels)

Figure 17: Examples of testing samples.

the comparison of extraction results of the original and aligned
group, in which there are parallel railroads on the test map. The
purple layer is the recognition result using the original group and
the layer with green lines is the result of using the aligned group.
The original group could only recognize the parallel railroads as a
wide railroad segment, while the aligned group could extract two
parallel railroads.

The reason that the precision was low in all three groups was
that some geographic features were similar as railroads within
the image window. Figure 17 shows an example. Figure 17(a) is
the sample containing railroads, while figure 17(b) is the sample
that contains roads. The system misclassified many testing samples
containing roads like this as railroads.

In the post-processing, we used the semantic knowledge of rail-
road to remove some false positives. The semantic knowledge we
employed in the experiment was that the railroad is a long continu-
ous linear geographic feature. In the post-processing, the system
removed the short line segments based on the semantic property
of the railroad.

Table 4 is the evaluation of the extraction result after post-
processing. The recognition performance of our system in the
aligned group increased around 55% on the F1 score compared
with the performance in the original group. The precision increased
by removing small false-positive segments. The recall in the aligned
group decreased a little comparedwith the one before post-processing,
because of the partial recognition. The green line in Figures 15(a)
and 15(b) is a partially recognition example. The true-positive small
segments were removed as well in this case. The recall in the origi-
nal group increased a little is because of the close operator used in
post-processing. The system applied the close operator (a dilation
followed by an erosion image operator) to make small true positive
segments connected. This operator made some non-railroad pixels
in the corners recognize as railroad pixels. Because of the wide
width of extracted railroad from the original group, these corner
pixels extend to the next parallel railroad in some place. In that



case, the number of true positives increased a little, which is the
reason that the recall after post-processing increased a little.
5 RELATEDWORK
In this paper, we presented an algorithm that automatically aligns
vector data with linear geographic features in historical scanned
maps. The alignment algorithm significantly improved the feature
extraction performance.

Some other researchers work on extracting geographic features
(roads) in aerial or satellite images by using Deep Convolutional
Neural Networks (DNN). They use the road vector data to gen-
erate training samples and evaluate extraction results. Wang et
al. [18] built the DNN to extract roads in satellite imagery by using
road vector maps to generate training data. Because there were not
enough points in the original vector maps to fit the road curves,
they refined the vector data by interpolating points to avoid roads
turning sharply. They had better extraction result by refining the
vector maps than using the original vector maps. Mnih et al. [12]
also extracted roads by using the road vector data to generate train-
ing data and did the evaluation. Because there were some noises in
the road vector data, they used relaxed metrics to evaluate the re-
sults. Both studies show that the vector data alignment significantly
influences the feature extraction performance.

Some other researchers proposed algorithms to solve the vector-
and-raster-data misalignment problem. Chen et al. [2, 3] invented
an algorithm that can automatically conflate road vector data with
orthoimagery. Their method has three steps. First, the algorithm
finds intersection point pairs. Second, the algorithm detects inac-
curate point pairs. In the last step, they align these points with
other objects in the imagery. Their method can only apply on roads
because their used intersections, a specific characteristic of roads
to align road vector data with imagery, while our approach does
not assume a specific feature type, and we tested on both railroads
and waterlines. Another difference between our works and the
others is the data type. They work on satellite imagery, while we
work on document images. Wu et al. [19, 20] proposed an algorithm
dealing with road vector data alignment with aerial imagery. Their
approach consists of four steps. In the first step, the algorithm de-
tects road feature around the road vector data. In the second step,
the algorithm clusters roads according to the orientation of the
roads. In the third step, the algorithm selects a reliable roads subset.
In the last step, the algorithm minimizes the cost function with the
selected subset. The final selected subset is the aligned road vector
data.
6 DISCUSSION AND FUTUREWORK
We presented an algorithm to accurately align linear vector data
with historical maps with high correctness and completeness. The
aligned vector data helps our recognition system achieve better
performance than using the original vector data.

We plan to improve the alignment algorithm by solving the two
groups of errors found in the experiment section. To prevent the
vector data from aligning with other nearby geographic features, we
plan to set the number of points in one neighborhood greater than
10. For handling parallel lines, we plan to find a way to include the
points in the nearby parallel line as a neighborhood when aligning
a point. We also plan to relax the criteria that the linear geographic
feature needs to be smooth to align vector data with sharp turns.

For the feature recognition system, we are going to improve the
recognition performance in two ways. In the experiment, we found
that many false positives were very similar to the true positives
within the window. Hence, one way that we plan to improve the
system is to try different window sizes to find more representative
training samples. In the related work, we found some researchers
use DNN to extract geographic features, which has good perfor-
mance. We plan to build a DNN model and test if the model can
improve the recognition performance.
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