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Abstract: Historical maps are unique sources of retrospective geographical information. Recently, 11 
several map archives containing map series covering large spatial and temporal extents have been 12 
systematically scanned and made available to the public. The geographical information contained 13 
in such data archives makes it possible to extend geospatial analysis retrospectively beyond the era 14 
of digital cartography. However, given the large data volumes of such archives (e.g., more than 15 
200,000 map sheets in the United States Geological Survey topographic map archive) and the low 16 
graphical quality of older, manually produced map sheets, the process to extract geographical 17 
information from these map archives needs to be automated to the highest degree possible. To 18 
understand the potential challenges (e.g., salient map characteristics and data quality variations) in 19 
automating large-scale information extraction tasks for map archives, it is useful to efficiently assess 20 
spatio-temporal coverage, approximate map content, and spatial accuracy of georeferenced map 21 
sheets at different map scales. Such preliminary analytical steps are often neglected or ignored in 22 
the map processing literature but represent critical phases that lay the foundation for any 23 
subsequent computational processes including recognition. Exemplified for the United States 24 
Geological Survey topographic map and the Sanborn fire insurance map archives, we demonstrate 25 
how such preliminary analyses can be systematically conducted using traditional analytical and 26 
cartographic techniques as well as visual-analytical data mining tools originating from machine 27 
learning and data science. 28 

Keywords: map processing; retrospective landscape analysis; visual data mining, image information 29 
mining, low-level image descriptors, color moments, t-distributed stochastic neighborhood 30 
embedding, USGS topographic maps, Sanborn fire insurance maps  31 
 32 

1. Introduction 33 
Historical maps contain valuable information about the Earth’s surface in the past. This 34 

information can provide a detailed understanding of the evolution of the landscape as well as the 35 
interrelationships between human-made structures (e.g., transportation networks, settlements), 36 
vegetated land cover (e.g., forests, grasslands), terrain and hydrographic features (e.g., stream 37 
networks, water bodies). However, this spatial information is typically locked in scanned map images 38 
and needs to be extracted to get access to the geographic features of interest in machine readable data 39 
formats that can be imported into geospatial analysis environments. 40 

Several efforts have recently been conducted in different countries to systematically scan, 41 
georeference, and publish entire series of topographic and other map documents. These 42 
developments include efforts at the United States Geological Survey (USGS), that scanned and 43 
georeferenced approx. 200,000 topographic maps published between 1884 and 2006 at different 44 
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cartographic scales between 1:24,000 and 1:250,000 [1] and the Sanborn fire insurance map collection 45 
maintained by the U.S. Library of Congress, that contains approximately 700,000 sheets of large-scale 46 
maps of approximately 12,000 cities and towns in the U.S., Canada, Mexico, and Cuba, out of which 47 
approximately 25,000 map sheets from over 3,000 cities have been published as scanned map 48 
documents [2-4] (Figure 1). Furthermore, the National Library of Scotland scanned and georeferenced 49 
more than 200,000 topographic map sheets and town plans for the United Kingdom dating back to 50 
the 1840s and provides many of them as seamless georeferenced raster layers [5,6]. 51 
 52 

 
(a) 

 
(b) 

Figure 1. Examples of historical map documents: (a) Subsection of a USGS topographic map 1:31,680 53 
of Santa Barbara (California, 1944) and (b) Sanborn fire insurance map from city center of Ciudad 54 
Juárez (Mexico, 1905). 55 

These developments, alongside with advances in information extraction and the processing, 56 
storage and distribution of large data volumes, offer great potential for automated, large-scale 57 
information extraction from historical cartographic document collections in order to preserve the 58 
contained geographic information and make it accessible for geospatial analysis. Because of the large 59 
amount of data contained in these map archives, information extraction has to achieve high degrees 60 
of automation. For example, the USGS map archive has an approximate uncompressed data volume 61 
of 50 terabytes, whereas the data volume of currently digitally available Sanborn fire insurance map 62 
sheets can be estimated to approximately 3.7 terabytes. 63 

This constitutes a challenging task given the high variability in the content and quality of map 64 
sheets within an archive. Possible reasons for such variability are different conditions of the archived 65 
analogue map documents, differences in the scan quality, as well as changes in the best practices in 66 
cartographic design that may have resulted in different symbologies across map editions (Figure 2).  67 

 68 

 69 
Figure 2. Available USGS topographic map sheets covering Boulder, Colorado (USA) from 1904 to 70 
2013 at various map scales. 71 
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Typically, knowledge about the variability in content and quality of map archives are a priori 72 
not available, since such large amounts of data cannot be analyzed manually. However, such 73 
information is critical for a better understanding of the data sources and the design of efficient and 74 
effective information extraction methods. Thus, there is an urgent demand to develop a systematic 75 
approach to explore such digital map archives, efficiently, prior to the actual extraction process, 76 
similar to existing efforts for remote sensing data. In this contribution, we examine various techniques 77 
that could be used to build an image information mining system for digital cartographic document 78 
archives in combination with metadata analysis. These techniques aim to answer the following 79 
questions a potential user of such map archives may ask prior to the design and implementation of 80 
information extraction methods: 81 

 82 
• What is the spatial and temporal coverage of the map archive content and does it vary across 83 

different cartographic scales? The user will need to know the potential extent, temporally and 84 
spatially, of the extracted data to understand benefit and value of the intended information 85 
extraction effort and for comparing different map archives. 86 

• How accurate is the georeference of maps contained in the archive? Does the accuracy vary in 87 
the spatio-temporal domain? This constitutes a pressing question if ancillary geospatial data is 88 
used for the information extraction and certain degrees of spatial alignment with map features 89 
are required. For example, if it is possible to a priori identify map sheets likely to suffer from a 90 
high degree of positional inaccuracy, the user can exclude those map sheets from template or 91 
training data collection, and thus, reduce the amount of noise in the collected training data. 92 

• How much variability is there in the map content, regarding color, hue, contrast, and in the 93 
cartographic styles used to represent the symbol of interest? This is a central question affecting 94 
the choice and design of a suitable recognition model. More powerful models or even different 95 
models for certain types of maps may be required if the representation of map content of interest 96 
varies heavily across the map archive. Furthermore, knowledge of variations in map content and 97 
similarity between individual map sheets is useful to optimize the design of training data 98 
sampling and to ensure the collection of representative and balanced training samples. 99 
 100 
The set of methods described herein help determine the spatial-temporal coverage of a historical 101 

map archive, its content, existing variations in cartographic design, and to partially assess the spatial 102 
accuracy of the maps, which are all critical aspects for information extraction. These preprocessing 103 
stages are often neglected in published research that traditionally focuses on the extraction methods. 104 
The presented approaches range from pure metadata analysis to descriptor-based visual data mining 105 
techniques such as image information mining [7] used for the exploration of large remote sensing 106 
data archives. These methods are exemplified using the USGS topographic map archive and the 107 
Sanborn fire insurance map collection. 108 

Chapter 2 gives an overview of related research. Chapter 3 introduces the data used in this work, 109 
and Chapter 4 describes the methods. Chapter 5 presents and discusses the results, and Chapter 6 110 
contains some concluding remarks and directions for future research. 111 

2. Background and related research 112 

2.1. Map processing 113 
Map processing, or information extraction from digital map documents, is a branch of document 114 

analysis that focuses on the development of methods for the extraction and recognition of information 115 
in scanned cartographic documents. Map processing is an interdisciplinary field that combines 116 
elements of computer vision, pattern recognition, geomatics, cartography, and machine learning. The 117 
main goal of map processing is to “unlock“ relevant information from scanned map documents to 118 
provide this information in digital, machine-readable geospatial data formats as a means to preserve 119 
the information digitally and facilitate the use of these data for analytical purposes [8]. 120 
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Remotely sensed earth observation data from space and airborne sensors has been 121 
systematically acquired since the early 1970s and provides abundant information for the monitoring 122 
and assessment of geographic processes and how they interact over time. However, for the time 123 
periods prior to operational remote sensing technology, there is little (digital) information that can 124 
be used to document these processes. Map processing often focuses on the development of 125 
information extraction methods from map documents or engineering drawings created prior to the 126 
era of remote sensing and digital cartography, thus expanding the temporal extent for carrying out 127 
geographic analyses and landscape assessments to more than 100 years in many countries. 128 

Information extraction from map documents includes the steps of recognition (i.e., identifying 129 
objects in a scanned map such as groups of contiguous pixels with homogeneous semantic meaning), 130 
and extraction i.e., transferring these objects into a machine-readable format (e.g., through 131 
vectorization). Extraction processes typically involve image segmentation techniques based on 132 
histogram analysis, color-space clustering, region growing or edge detection. Recognition in map 133 
processing is typically conducted using computer vision techniques including template matching 134 
techniques involving feature (e.g., shape) descriptors, cross-correlation measures, etc. Exemplary 135 
applications of map processing techniques include the extraction of buildings [9-11], road networks 136 
[12], contour lines [13], composite forest symbols [14], and the recognition of text from map 137 
documents [15,16]. Most approaches rely on handcrafted or manually collected templates of the 138 
cartographic symbol of interest and involve a significant level of user interaction, which impedes the 139 
application of such methods for large-scale information extraction tasks where high degrees of 140 
automation are necessary to process documents with high levels of variation in data quality. 141 

2.2. Recent developments in map-based information extraction 142 
The availability of abundant contemporary geospatial data for many regions of the world offers 143 

new opportunities to employ them as ancillary information to facilitate the extraction and analysis of 144 
geographic content from historical map documents. This includes the use of contemporary spatial 145 
data for georeferencing historical maps [17], assessing the presence of objects in historical maps across 146 
time [18], or the automated collection of template graphics for cartographic symbols of interest [19]. 147 

Most existing approaches for content extraction from historical maps still require a certain 148 
degree of user interaction to ensure acceptable extraction performance for individual map sheets, e.g. 149 
[20]. To overcome this persistent limitation, [21] and [22] propose the use of active learning and 150 
similar interactive concepts for more efficient recognition of cartographic symbols in historical maps, 151 
whereas [23] examine the usefulness of crowd-sourcing for the same purpose.  152 

Moreover, the recent developments in deep machine learning in computer vision and image 153 
recognition have catalyzed the use of such techniques for geospatial information extraction from 154 
earth observation data [24-33]. This methodological development naturally projects into the idea of 155 
applying state-of-the-art machine learning techniques for information extraction from scanned 156 
cartographic documents, despite their fundamentally different characteristics compared to remotely 157 
sensed data. Key in both cases is the need for abundant and representative training data which 158 
requires automated sampling techniques. First attempts in this direction have used ancillary 159 
geospatial data for the collection of large amounts of training data in historical maps [34-37]. 160 

Alongside with the increasing availability of whole map archives as digital data, central 161 
challenges in map processing include the handling of the sheer data volume, the differences in 162 
cartographic scales and designs, changes in content, graphical quality and cartographic 163 
representations, the spatial and temporal coverage of the map sheets, and the spatial accuracy of the 164 
georeferenced map which dictates the degree of spatial agreement to contemporary geospatial 165 
ancillary data. While the previously described approaches represent promising directions towards 166 
higher levels of automation, they imply that the graphical characteristics of the map content to be 167 
extracted are known and that map scale and cartographic design remain approximately the same 168 
across the processed map documents. 169 

 170 
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2.3. Image information mining 171 
The remote sensing community faces similar challenges. The steadily increasing amount of 172 

remotely sensed earth observation data requires effective mining techniques to explore the content 173 
of large remote sensing data archives. Therefore, visual data mining techniques have successfully 174 
been used to comprehensively visualize the content of such archives. Such image information mining 175 
systems facilitate discovery and retrieval using available metadata, and they make use of the 176 
similarity of the content of the individual datasets, or of patches of these [38-39], and guide 177 
exploratory analysis of large amounts of data to support subsequent development of information 178 
extraction methods. Such a system has for example been implemented for TerraSAR-X data [40], or 179 
for patches of Landsat ETM+ data and the UC Merced benchmark dataset [41]. These systems are 180 
based on spectral and textural descriptors precomputed at dataset or patch level that are then 181 
combined to multidimensional descriptors characterizing spectral-textural content of the datasets or 182 
patches. Other approaches include image segmentation methods to derive shape descriptors [42], 183 
integrate spatial relationships between images into the image information mining system [43], or 184 
make use of structural descriptors to characterize the change of geometric patterns over time across 185 
datasets within remote sensing data archives [44]. Comparison of these descriptors facilitates the 186 
retrieval of similar content across large archives. These approaches include methods for 187 
dimensionality reduction to visualize an entire data archive in a two or three-dimensional feature 188 
space based on content similarity. 189 

Whereas in remote sensing data archives the spatio-temporal coverage of the data and their 190 
quality is relatively well-known based on the sensor characteristics (e.g., the time of operationality, 191 
satellite orbit, revisiting frequency, knowledge about physical parameters affecting data quality), this 192 
may not always be the case for historical map archives, where metadata on spatial-temporal data 193 
coverage might not be available or available in semi-structured data formats only, impeding direct 194 
and systematic analysis. 195 

3. Data 196 
In this study, we analyzed map documents from the USGS map archive for the states of 197 

California (14,831 map sheets) and Colorado (6,964 map sheets). These map sheets were scanned by 198 
the USGS at a resolution of approximately 500 dpi (dots per inch) resulting in TIF files with an 199 
uncompressed data volume of more than 5.3 Terabyte for the two states under study. Whereas the 200 
authors were granted access to these data covering the two states at original scanning resolution, 201 
slightly downsampled versions of these map documents covering the whole U.S. can be publicly 202 
accessed at [45]. 203 

The delivered raw data was not georeferenced, but included metadata for the georeferencing 204 
process, i.e., coordinate pairs and error estimates of the ground control points (GCP) used for each 205 
individual map sheet allowing for batch georeferencing of the map sheets on the user side. In addition 206 
to that, corner coordinates of each map sheet are reported in the metadata allowing for the creation 207 
of spatial footprints (i.e., the USGS map quadrangle outlines) without georeferencing them. These 208 
metadata was available in a structured form in XML or CSV formats. 209 

Furthermore, we used metadata of the Sanborn fire insurance map archive in this study, 210 
including the locations (i.e., geographic names), the reference years, and the number of map sheets 211 
available for each location, which is available as semi-structured HTML web content from the U.S. 212 
Library of Congress website [46]. 213 

4. Methods 214 
We conducted Metadata analysis for the USGS topographic map archive exemplified for the 215 

states of California and Colorado based on structured metadata, as well as for the Sanborn fire 216 
insurance map archive in the United States based on semi-structured metadata. Next, we carried out 217 
content-based image analysis for the USGS topographic map archive covering the state of Colorado 218 
at different map scales, involving the use of image descriptors, dimensionality reduction and data 219 
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visualization methods, as well as a similarity assessment based on geospatial ancillary data. The 220 
workflow diagram in Figure 3 shows how the proposed methods (in blue) based on given map data, 221 
metadata and ancillary data (in beige) can be incorporated to generate knowledge useful for 222 
subsequent information extraction procedures (in grey). 223 

 224 

 225 
Figure 3. The methodology for metadata analysis of and content-based knowledge generation from 226 
map archives to facilitate information extraction. 227 

4.1. Metadata analysis 228 

4.1.1. Spatio-temporal coverage analysis 229 
Based on the structured metadata (i.e., map scale, reference year, corner coordinates, and GCP 230 

coordinate pairs in XML and CSV data formats) available for the USGS map archive, we created 231 
several aspatial visualizations (i.e., histograms and violin plots) illustrating the spatio-temporal 232 
coverage of the map archive. Based on the spatial footprints of the map sheets, we computed 233 
statistical measures such as the earliest reference year per map quadrangle and visualized them, 234 
spatially, in order to reveal potential spatial patterns of the coverage in the spatio-temporal domain 235 
(Section 5.1.1).  236 

We retrieved the semi-structured metadata of the Sanborn map archive from HTML-based web 237 
content to derive the geospatial location of each map location (i.e., town or city name, county, and 238 
state) using web-based geocoding services to then visualize data availability and spatio-temporal 239 
coverage of Sanborn map documents (Section 5.1.1). 240 

4.1.2. Assessing positional accuracy 241 
Positional accuracy of scanned maps can be caused by several factors, such as paper map 242 

distortions due to heat or humidity, the quality of surveying measurements on which the map 243 
production is based, deviations from the local geodetic datum at data acquisition time, cartographic 244 
generalization, and distortions introduced during the scanning and georeferencing process. While 245 
most of these effects cannot be reconstructed or quantified in detail, metadata delivered with the 246 
USGS topographic map archive contains information about the GCPs used for georeferencing the 247 
scanned map documents that we used for a partial assessment of these distortions and resulting 248 
positional inaccuracies. 249 

The USGS topographic map quadrangle boundaries represent a graticule. For example, the 250 
corner coordinates for quadrangles of scale 1:24,000 are spaced in a regular grid of 7.5’x7.5’. 251 
Additionally, a finer graticule of 2.5’x2.5’ is depicted in the maps. The intersections of this fine 252 
graticule are used by the USGS to georeference the maps. Therefore, we collected the pixel 253 
coordinates at those locations (i.e., the GCPs), and used the corresponding known world coordinates 254 
of the graticule intersections to establish a second-order polynomial transformation based on least-255 
squares adjustment. We used this transformation to warp the scanned document into a georeferenced 256 
raster dataset. We reported the GCP coordinate pairs in the metadata, as well as an error estimate per 257 
GCP that provides information on the georeference accuracy in pixels. Based on these error estimates 258 
given in pixel units and the spatial resolution of the georeferenced raster given in meters, we 259 
calculated the root mean standard error (RMSE) reflecting the georeference accuracy in meters. We 260 
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appended these RMSE values as attributes to the map quadrangle polygons to visualize the 261 
georeference accuracy across the spatial-temporal domain. 262 

Furthermore, we characterized the distortion introduced to the map by the warping process 263 
using displacement vectors computed between the known world coordinates of each GCP (i.e., the 264 
graticule intersections) and the world coordinates corresponding to the respective pixel coordinates 265 
after applying the second-order polynomial transformation. These displacement vectors reflected 266 
geometric distortions and positional inaccuracy in the original map (i.e., prior to the georeferencing 267 
process) but are also affected by additional distortions introduced during georeferencing or through 268 
scanner miscalibration.  269 

Assuming that objects in the map are affected by the same degree of inaccuracy like the graticule 270 
intersections, the magnitudes of these displacement vectors make it possible to estimate the 271 
maximum displacements to be expected between objects in the map and their real-world counterparts 272 
that may not be corrected by the second order polynomial transformation. We visualized these 273 
displacement vectors to indicate the magnitude and direction of such distortions, and potentially 274 
identify anomalies (Section 5.1.2). 275 

4.2. Content-based image analysis 276 
The presented metadata-based analysis provides valuable insights of spatial-temporal map 277 

availability, coverage, and spatial accuracy without analyzing the actual content of the map archives. 278 
However, it is important to inform the analyst about the degree of heterogeneity at the content-level. 279 
Therefore we computed low-level image descriptors (i.e., color moments) at multiple levels of 280 
granularity, i.e., for individual map sheets and for patches of maps. We then use these image 281 
descriptors as input to a dimensionality reduction method (i.e., t-distributed stochastic neighborhood 282 
embedding) in order to visualize the maps or map patches in a two or three dimensional space for 283 
effective visual map content assessment, and analytical assessment of their similarity. 284 

4.2.1. Low-level image descriptors 285 
In order to obtain detailed knowledge about the content of map archives, we developed a 286 

framework based on low-level image descriptors computed for each map or map patches. We 287 
employed color-histogram based moments (i.e., mean, standard deviation, skewness and kurtosis, 288 
see [47]) computed for each image channel in the RGB color space. Mean and standard deviation 289 
characterize hue, brightness and contrast level of an image, skewness and kurtosis indicate the 290 
symmetry and flatness of the probability density of the color distributions, and thus reflect color 291 
spread and variability of an image. They are invariant to rotations, however, they do not take into 292 
account textural information contained in the image. We computed these four measures for each 293 
channel of an image and stacked them together to a 12-dimensional feature descriptor, at image or 294 
patch level. In the case of scanned map documents, such descriptors make it possible to retrieve maps 295 
or patches of maps of similar background color (depending on paper type and scan contrast level), 296 
and maps of similar dominant map content, such as waterbodies, urban areas, or forest cover. This 297 
similarity assessment was based on distances in the descriptor feature space and could also involve 298 
metadata (e.g., map reference year), or ancillary geospatial data, to assess map content similarity 299 
across or within different geographic settings.  300 

4.2.2. Dimensionality reduction 301 
Furthermore, we employed approaches for dimensionality reduction such as t-distributed 302 

stochastic neighborhood embedding (t-SNE, [48]) to visualize the image data based on similarity in 303 
feature space. T-SNE allows for reducing the dimensionality of high-dimensional data, where the 304 
relative distances between the data points in the reduced feature space reflect the similarity of the 305 
data points in the original feature space. T-SNE is based on pair-wise similarities of data points, where 306 
the corresponding similarity measures in the target space are modelled by a Student-t-distribution 307 
[49]. The transformation of the data points into the target space of dimension 2 or 3 is conducted in 308 
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an iterative optimization process that aims to reflect local similarity and global clustering effects of 309 
the original space in the target space of a reduced dimensionality. This iterative process uses a 310 
gradient descent method to iteratively minimize a cost function and can be controlled by several user-311 
defined parameters, such as the learning rate, perplexity, and maximum number of iterations. T-SNE 312 
is able to create visually appealing data representations in 2 or 3 dimensional spaces reflecting the 313 
inherent similarity and variability of the data, but may be prone to non-convergence effects resulting 314 
in meaningless visualizations if the chosen optimization parameters are not suitable for the data used. 315 
For the t-SNE transformations described in this work, we used a perplexity value of 30, a learning 316 
rate of 200, and a maximum number of 1,000 iterations, in order to yield visually satisfactory results, 317 
i.e., showing meaningful spatial patterns such as clusters. The application of this method to image-318 
moments-based map descriptors facilitates the visual or quantitative identification of clusters of 319 
similar map sheets and provides a better understanding of the content of large map archives and 320 
their inherent variability. This kind of similarity assessment and metadata analysis is useful in 321 
generating knowledge which can be used to guide sampling designs to generate template or training 322 
data for supervised information extraction techniques.  323 

4.2.3. Multi-level content analysis   324 
We computed image descriptors at different levels of spatial granularity, at the map level and 325 

map patch level. 326 
 327 
Content analysis at map level: We analyzed the content of the entire map archive with respect 328 

to similarities between the individual map sheets by computing the image-moments based map 329 
descriptors and transforming them into a 3-dimensional space using t-SNE that can be visualized and 330 
interpreted intuitively.  331 

 332 
Content analysis at map patch level: Map patches can be compared within a single map sheet, 333 

or across multiple map sheets. In order to assess the content within map sheets, we partitioned the 334 
map documents into tiles of a fixed size. We used the quadrangle boundaries based on corner 335 
coordinates delivered in the metadata to clip the map contents and removed non-geographic content 336 
in the map sheet edges. Then, we computed low-level descriptors based on color moments for each 337 
individual patch. If the patch size was chosen small enough, it appeared computationally feasible to 338 
use the raw (or down-sampled) patch data (e.g., a line vector of all pixel values in the patch) as a basis 339 
for t-SNE transformations. This could be useful if one desires to introduce a higher degree of 340 
spatiality and even directionality when assessing the similarity between the patches.  341 

If variations of specific cartographic symbols across map sheets are of interest and have to be 342 
characterized, ancillary geospatial data can be employed to label the created map patches based on 343 
their spatial relationships to the ancillary data. For example, it may be important to assess the 344 
differences in cartographic representations of dense urban settlement areas across map sheets, in 345 
order to design a recognition model for urban settlement. To test such a situation, we employed 346 
building footprint data with built-year information and the respective spatio-temporal coverage to 347 
reconstruct settlement distributions in a given map reference year (see [50]). Based on these reference 348 
locations, we then computed building density surfaces for each map reference year and used 349 
appropriate thresholding to approximately delineate dense settlement areas for a given point in time. 350 
Based on spatial overlap between map patches and these dense reference settlement areas, we were 351 
able to identify map patches that are likely to contain urban area symbols across multiple maps. We 352 
the visualized these selected map patches in an integrated manner using t-SNE arrangements. 353 
  354 
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5. Results 355 

5.1. Metadata analysis 356 

5.1.1. Metadata-based spatial-temporal coverage analysis 357 
First, we analyzed the temporal coverage of the map archives. For the USGS map archive, we 358 

created histograms based on the map reference year included in the accompanying metadata (Figure 359 
4). It can be seen that the peak of map production in California was in the 1950s, and slightly later, in 360 
the 1960s in Colorado. 361 

 
(a) 

 
(b) 

Figure 4. Histograms of USGS topographic maps (all available map scales) by reference year, (a) in 362 
California, and (b) in Colorado (USA). 363 

In addition to that, we assessed map production activity over time for different strata of map 364 
scales shown for the states of California and Colorado (Figure 5). These plots show the temporal 365 
distribution of published map editions (represented by the dots) and give an estimate of the 366 
underlying probability density (represented by the white areas) that indicates the map production 367 
intensity over time, separate and relative for each map scale. For example, this probability density 368 
estimate reveals a peak of map production at scale 1:62,500 in Colorado (Figure 5b) around 1955 369 
which is not visible in scatterplot alone. Such a representation helps to understand which time span 370 
can be covered with maps of various scales and thus can be used to determine which products to 371 
focus on for a particular purpose. This is important because maps of different scale contain different 372 
levels of detail resulting from cartographic generalization. 373 

 374 

 
(a) 

 
(b) 

Figure 5. Produced USGS topographic maps per reference year and map scale (a) in California, and 375 
(b) in Colorado (USA). 376 
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In order to assess the spatial variability of map availability in a map archive over time, we visualized 377 
the number of map editions and the earliest reference year available for each location, in Figure 6 for 378 
the state of Colorado (scale 1:24,000), and for the map scales 1:24,000 and 1:62,500 for the state of 379 
California in Figure 7, respectively. Such representations are useful to identify regions that have been 380 
mapped more intensively versus those for which temporal coverage is rather sparse. Furthermore, a 381 
user is immediately informed about the earliest map sheets for a location of interest to understand 382 
the maximum time period covered by these cartographic documents. Similar representations could 383 
be created for the average number of years between editions or the time span covered by map editions 384 
of a given map scale. 385 

 
(a) 

 
(b) 

Figure 6. (a) Map edition counts and (b) earliest map production year per 1:24,000 map quadrangle 386 
in the state of Colorado (USA) based on metadata analysis. 387 

 388 
(a) (b) (c) (d) 

Figure 7. (a) Map edition counts per 1:24,000 map quadrangle, (b) map edition counts per 1:62,500 389 
map quadrangle, (c) earliest map production year per 1:24,000 map quadrangle, and (d) earliest map 390 
production year per 1:62,500 map quadrangle in the state of California (USA) based on metadata 391 
analysis. 392 

As a second example, we visualized the spatial-temporal coverage of the Sanborn fire insurance 393 
map archive. Figure 8 shows, similar to the above examples, the year of the first map production and 394 
the number of maps produced in total per location. The comparison of these visualizations for the 395 
highlighted states of California and Colorado to the previously shown Figures 6 and 7 shows the 396 
differences in spatio-temporal coverage between the two map archives, indicating a much sparser 397 
spatial coverage of the Sanborn map archive, but extending further back in time than the USGS map 398 
archive. 399 

 400 
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(a) 

  
(b) 

Figure 8. Sanborn fire insurance map archive coverage: (a) year of first map production per location 401 
and (b) number of available map sheets per location, both aggregated to grid cells of 20km for efficient 402 
visualization. Highlighted in blue the states of California and Colorado for comparison to the USGS 403 
map coverage shown in the previous figures. 404 

5.1.2. Metadata-based spatial-temporal analysis of positional accuracy 405 
To illustrate the georeference accuracy for the USGS maps of scale 1:24,000 in the state of 406 

Colorado (Figure 9) for different time periods, we visualized the maximum RMSE per quadrangle 407 
and time period. Such temporally stratified representations are useful to examine whether the 408 
georeference accuracy is constant over time. It can be seen that the earlier years in this example show 409 
higher degrees of inaccuracy than more recent map sheets. This has important implications for the 410 
user who is interested in using maps from different points in time that may exhibit different levels of 411 
inaccuracy. 412 

 413 

  
(a) 1930-1950 

  
(b) 1950-1970 

 
(c) 1970-1990 

 
(d) 1990-2004 

Figure 9. Spatio-temporal patterns of georeference accuracy of USGS topographic maps (1:24,000) in 414 
the state of Colorado (USA), for maps produced between (a) 1930-1950, (b) 1950-1970, (c) 1970-1990, 415 
and (d) 1990-2004. 416 
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Figure 10 shows examples of these displacement vectors visualized for individual USGS map 417 
sheets at scale 1:24,000 from Venice (California) produced in 1923, 1957, and 1975. We represent the 418 
magnitude of the local displacement by the dot area, whereas the arrow indicates the displacement 419 
angle. This example shows similar patterns across the three maps, probably reflecting non-420 
independent distortions between the maps since earlier maps are typically used as base maps for 421 
subsequent map editions, and some local variations due to inaccuracies introduced during 422 
georeferencing of the individual map sheets. 423 

 424 
(a) (b) (c) 

Figure 10. Displacement vectors at GCP locations characterizing the distortions introduced during 425 
the georeferencing of USGS topographic maps (scale 1:24,000) from Venice (California), produced in 426 
(a) 1923, (b) in 1957, and (c) in 1975 (from left to right). 427 

Additionally, we visualized these displacement vectors as vector fields across larger areas, to 428 
identify regions, quadrangles, or individual maps of high or low positional reliability, respectively. 429 
Figure 11 shows the vector field of relative displacements for USGS maps of scale 1:24,000 for a region 430 
Northwest of Denver, Colorado. Notable are the large displacement vectors in the Parshall 431 
quadrangle, indicating some anomalous map distortion, whereas the Cabin Creek quadrangle 432 
(Northeast of Parshall) seems to have suffered from very slight distortions only. Such anomalous 433 
distortions as detected in the Parshall quadrangle may indicate extreme distortions in the 434 
corresponding paper map, or outliers in the GCP coordinates used for georeferencing. Multiple 435 
arrows indicate the availability of multiple map editions in given quadrangles. Such visualizations 436 
may inform map users about the heterogeneity in distortions applied to the map sheets during the 437 
georeferencing process and may indicate different degrees of positional accuracy across a given study 438 
area. 439 

 440 
Figure 11. Displacement vector field at GCP locations over multiple USGS map quadrangles of scale 441 
1:24,000, located North-west of Denver (Colorado), reflecting different types of distortions introduced 442 
to the map documents during the georeferencing process (Basemap source: [51]). 443 
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According to the USGS accuracy standards [52], a horizontal accuracy (i.e., RMSE) of <12.2 444 
meters is required for maps at a scale of 1:24,000. Whereas the georeference accuracies visualized in 445 
Figure 9 are all smaller or equal to 5 meters, we found that the magnitudes of the displacement vectors 446 
shown in Figures 10 and 11 exceed the value of 12.2 meters, considerably. It is important to point out 447 
that these displacement vectors may be caused by distortions in the paper map, by outliers in the 448 
GCPs, or by differences in the spatial reference systems used in the original map and for 449 
georeferencing. Thus, these displacement vectors do not represent the absolute horizontal map 450 
accuracy alone, but rather serve as measures to characterize variability in the overall distortions 451 
applied during the georeferencing across time and map sheets, and to identify anomalies such as 452 
shown in Figure 11 where users should be careful with respect to further information extraction from 453 
such map sheets. 454 

5.2. Content-based analysis 455 

5.2.1. Content-based analysis at map level 456 
Figure 12 shows the map-level image descriptors transformed into a 3D feature space for the 457 

6,964 USGS maps in the state of Colorado. We used the map reference year to color-code the points 458 
representing individual map sheets. The highlighted clusters of dark blue points indicate 459 
fundamentally different color characteristics of old maps in comparison to more recent maps 460 
represented by points colored in green-yellow tones. 461 

 462 
Figure 12. T-SNE visualization of the 6,964 USGS maps in the state of Colorado in a 3D feature space 463 
based on 12-dimensional image descriptors obtained from channel-wise color moments. 464 

In addition to color-coding the data points by the corresponding map reference year, we 465 
transformed the 12-dimensional descriptors into a 2D feature space, and visualized them using 466 
thumbnails of individual maps corresponding to each data point in Figure 12. This transformation 467 
results in an integrated visual assessment of map archives containing large numbers of map sheets. 468 
Figure 13 shows a t-SNE thumbnail visualization of a random sample (N=4,356) of the Colorado 469 
USGS maps in a 2D feature space. We used nearest neighbor snapping to create a rectangular 470 
visualization. This is a very effective way to visualize the variability in map contents, such as 471 
dominating forest area proportions. It also illustrates the presence and abundance of different map 472 
designs and base color use, e.g., high contrast and saturation levels in recent maps, compared to 473 
yellow-tainted map sheets from the beginning of the 20th century centered at the bottom. The latter 474 
corresponds to the cluster of historical maps located at the bottom of the point cloud in Figure 12.  475 
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 476 

Figure 13. Thumbnail-based visualization of a subset of the USGS topographic maps in the state of 477 
Colorado (USA) based on a 2D transformation of the 12-dimensional image descriptor feature space 478 
using t-SNE. 479 

5.2.2. Content-based analysis at within-map patch level 480 
We used the t-SNE transformation of patch-level descriptors to rearrange a map document in 481 

patches based on patch similarity, as shown for an example USGS map in Figure 14a. We partitioned 482 
the clipped map content in tiles of 100x100 pixels, down-sampled them by factor 4, and used the raw 483 
pixel values as input for the t-SNE transformation. This results in a 1,875-dimensional feature vector 484 
per patch. We then transformed these features into a 2D-space using t-SNE in order to create a 485 
similarity-based rearrangement of the map patches (Figure 14b). This rearrangement based on raw 486 
pixel values highlights for example the groups of linear objects of different dominant directions, such 487 
as road objects oriented in East-West and North-South direction (Figure 14b, upper right, and upper 488 
left, respectively), or clusters of patches that contain contour lines with diffuse directional 489 
characteristics (Figure 14b, center left) The incorporation of directionality may be useful to design 490 
sampling schemes that generate training data allowing for rotation-invariant feature learning. 491 
 492 
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Figure 14. (a) USGS topographic map for Boulder, Colorado (1966), and (b) rearranged map patches 493 
according to their similarity in a raw pixel value feature space using t-SNE. 494 

5.2.3. Content-based analysis at cross-map patch level 495 
Based on ancillary data indicating the presence of dense urban settlements (see Section 4.2.3), we 496 
extracted patches that are likely to contain dense urban settlement symbols from map patches 497 
collected across 50 USGS maps (1:24,000) in the states of Colorado and California, as shown in Figure 498 
15. This arrangement illustrates nicely the different cartographic styles that are used to represent 499 
dense urban settlements across time and map sheets, and provides valuable information useful for 500 
the design of a recognition model. Additional samples could be collected at locations where no 501 
ancillary data is available, and their content can be estimated based on descriptor similarity (i.e., 502 
patches of low Euclidean distance in the descriptor feature space) or using unsupervised or 503 
supervised classification methods. 504 
 505 

 506 
Figure 15. T-SNE arrangement of cross-map samples of patches likely to contain dense urban 507 
settlement symbols. 508 
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6. Conclusions and Outlook 509 
In this paper, we presented a set of methods for systematic information mining and content 510 

retrieval in large collections of cartographic documents, such as topographic map archives. These 511 
methods consist of pure metadata-based analyses, as well as content-based analyses using low-level 512 
image descriptors such as histogram-based color moments, and dimensionality reduction methods 513 
(i.e., t-SNE). We illustrate the proposed approach by exemplary analyses of the USGS topographic 514 
map archive and the Sanborn fire insurance map collection. Our approach can be used to explore and 515 
compare spatio-temporal coverage of these archives, the variability of positional accuracy, and 516 
differences in content of the map documents based on visual-analytical tools. These content-based 517 
map mining methods are inspired by image information mining systems implemented for remote 518 
sensing data archives. 519 

More specifically, analysts aiming to develop information extraction methods from large map 520 
archives can benefit from the proposed methods as follows: 521 

 522 
Spatio-temporal coverage analysis:  523 
• Estimation of the spatio-temporal coverage of the extracted data 524 
• Guidance for the design of the training data collection, to ensure the collection of balanced and 525 

representative training data across the spatio-temporal domain. 526 
 527 

Spatio-temporal analysis of spatial accuracy: 528 
• Estimating the spatial accuracy of the extracted data 529 
• Excluding map sheets of potential low spatial accuracy to ensure high degrees of spatial 530 

alignment of map and ancillary data used for training data collection and thus, to reduce noise 531 
in the collected training data 532 
 533 

Content-based image analysis:  534 
• Assessing the variations in map content as a fundamental step in order to choose adequate 535 

information extraction methods capable of handling data of the given variability and to create 536 
representative training data accounting for such variations. 537 

 538 
The presented methods have been tested and proven useful as preliminary steps to facilitate the 539 

design and implementation of information extraction methods from historical maps, e.g., regarding 540 
the choice of training areas and classification methods [34,35]. Further work will include the 541 
incorporation of suitable image descriptors accounting for textural information contained in map 542 
documents. Additionally, the benefit of indexing techniques based on image descriptors will be 543 
tested in a prototype map mining framework, facilitating the retrieval of similar map sheets in large 544 
map archives. Moreover, these efforts will contribute to the design of adequate sampling methods to 545 
generate large amounts of representative training data for large-scale information extraction methods 546 
from historical map archives based on deep-learning methods. 547 

Such large-scale extraction of retrospective geographical information from historical map 548 
archives will contribute to create analysis-ready geospatial data for time periods prior to the era of 549 
digital cartography, and thus help to better understand the spatial-temporal evolution of human 550 
settlements, transportation infrastructure, forest coverage, or hydrographic features and their 551 
interactions with social and socio-economic phenomena over long periods of time. Such knowledge 552 
may be used to support and improve predictive land cover change models, and constitutes a valuable 553 
information base for decision making for planning or conservation purposes. 554 

Similarly to web-based data storage and processing platforms for remote sensing data [53-55], 555 
adequate computational infrastructure will be required for effective processing of large volume map 556 
archives. The USGS data used in this study are accessed through a web storage service. We expect 557 
that in the near future additional map archives will be made available using similar web-based 558 
storage services that will facilitate the direct incorporation of the data into information extraction 559 
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processes (e.g., based on deep learning) implemented in cloud-computing platforms at reasonable 560 
computational performance and without previous manual and time-consuming data download. 561 

The discussed content-based image analysis can be extended to most types of map archives as 562 
presented. The described metadata-based methods have the potential to be adapted to other existing 563 
map archives if metadata and georeference information is available in ways similar to the archives 564 
presented in this work. This study aims to raise awareness of the importance of a-priori knowledge 565 
of large spatial data archives before using the data for information extraction purposes and help to 566 
anticipate potential challenges involved. Such systematic mining approaches of relevant information 567 
about map archives help to inform and educate the user community on critical aspects of data 568 
availability, quality and spatio-temporal coverage. 569 

In conclusion, this work demonstrates how state-of-the-art data analysis and information 570 
extraction methods are not only useful to handle and analyze large amounts of contemporary or real-571 
time streaming data, but also provide computational infrastructure suitable for processing historical 572 
geospatial data. 573 
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