
Automatically and Accurately Conflating  
Orthoimagery and Street Maps 

 
Ching-Chien Chen, Craig A. Knoblock, Cyrus Shahabi, Yao-Yi Chiang, and Snehal Thakkar 

University of Southern California 
Department of Computer Science and Information Sciences Institute 

Los Angeles, CA 90089-0781 
[chingchc, knoblock, shahabi, yaoyichi, snehalth] @usc.edu 

 
ABSTRACT 
 

Recent growth of the geospatial information on the web has made 
it possible to easily access various maps and orthoimagery. By 
integrating these maps and imagery, we can create intelligent 
images that combine the visual appeal and accuracy of imagery 
with the detailed attribution information often contained in 
diverse maps. However, accurately integrating maps and imagery 
from different data sources remains a challenging task. This is 
because spatial data obtained from various data sources may have 
different projections and different accuracy levels. Most of the 
existing algorithms only deal with vector to vector spatial data 
integration or require human intervention to accomplish imagery 
to map conflation. In this paper, we describe an information 
integration approach that utilizes common vector datasets as 
"glue" to automatically conflate imagery with street maps. We 
present efficient techniques to automatically extract road 
intersections from imagery and maps as control points. We also 
describe a specialized point pattern matching algorithm to align 
the two point sets and conflation techniques to align the imagery 
with maps. We show that these automatic conflation techniques 
can automatically and accurately align maps with images of the 
same area. In particular, using the approach described in this 
paper, our system automatically aligns a set of TIGER maps for an 
area in El Segundo, CA to the corresponding orthoimagery with 
an average error of 8.35 meters per pixel. This is a significant 
improvement considering that simply combining the TIGER maps 
with the corresponding imagery based on geographic coordinates 
provided by the sources results in error of 27 meters per pixel. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications ― 
Spatial Databases and GIS 

General Terms 
Algorithms, Design 

Keywords 
Conflation, orthoimagery, street maps, point pattern matching 

1. INTRODUCTION 
There is a wide variety of geospatial data available on the Internet, 
including a number of data sources that provide imagery and maps 
of various regions. The National Map1, ESRI Map Service2, 
MapQuest3, University of Texas Map Library4, Microsoft 
TerraService5, and Space Imaging6 are good examples of map or 
imagery repositories. In addition, a wide variety of maps are 
available from various government agencies, such as property 
survey maps and maps of oil and natural gas fields. Satellite 
imagery and aerial photography have been utilized to enhance real 
estate listings, military intelligence applications, and other 
applications. Road vector data covering all of the United States is 
available from the U.S. Census Bureau7. By integrating these 
spatial datasets, one can support a rich set of queries that could 
not have been answered given any of these datasets in isolation. 
Furthermore, this integration would result in cost savings for 
many applications, such as county, city, and state planning, or 
integration of diverse datasets for emergency response. However, 
accurately integrating these geospatial data from different data 
sources remains a challenging task.  This is because spatial data 
obtained from various data sources may have different projections 
and different accuracy levels. If the geographic projections of 
these datasets are known, then they can be converted to the same 
geographic projections.  However, the geographic projection for a 
wide variety of geospatial data available on the Internet is not 
known.  Consider the integration of imagery and maps. Most 
online imagery (such as satellite imagery and aerial imagery) has 
been orthorectified (called orthoimagery, i.e., this imagery is 
altered from original photos so that it has the geometric properties 
of a map). Moreover, online maps are routinely revised using 
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satellite imagery or aerial photographs these days. However, these 
maps might align to imagery of a particular resolution and 
misalign to imagery that has different resolutions or different 
orthorectification parameters. The fact that many of the online 
map sources do not provide the geo-coordinates of the maps 
makes the integration even more complicated. In previous work, 
we developed an approach to automatically conflating road vector 
data with imagery [7]. In this paper we describe how we address 
the even more challenging problem of automatically conflating 
street maps (i.e., maps showing roads) with imagery. 
Figure 1 shows an example of integrating a street map (geo-
referenced US Census TIGER map with the scale 1:4269 which is 
queried from the TIGER Map Server8) and an image (geo-
referenced USGS DOQ images with 2-meter per pixel resolution 
which is queried from Microsoft TerraService). The map is made 
semi-transparent with the underlying image. We can see that there 
are certain geospatial inconsistencies between the map and 
imagery. In this paper, we describe our approach to automatically 
and accurately aligning orthoimagery with the various online 

street maps to alleviate these inconsistencies. In addition, we can 
take maps that have not been geo-referenced and automatically 
determine the geo-coordinates. By properly aligning imagery with 
maps, we can annotate objects on imagery, such as roads, streets 
and parks, with the maps. Consider the example shown in Figure 
2. The user sees the imagery of unknown area nearby and notices 
a park in the imagery. However, the imagery does not provide 
street names, so the user cannot determine how to reach the park. 
Using the techniques described in this paper, user can easily 
obtain an integrated view of the imagery with the map of the area, 
which would guide the user on how to reach the park. 
The traditional approach to aligning these various geospatial 
products is to use a technique called conflation [21], which 
requires identifying an appropriate set of counterpart features 
(termed control points) on the two data sources to be integrated. 
Other points will be moved according to the correspondence 
between the control point pairs. Various GIS researchers and 
computer vision researchers have shown that the intersection 
points on the road networks provide an accurate set of control 
point pairs [7, 11, 12, 14]. In addition, road networks are 
commonly illustrated on diverse maps. The identification of these 
control points is often performed manually, which is a tedious and 

 
a) TIGER street map b) Satellite image c) Imagery with superimposed map ( the roads on 

imagery are represented as white lines) 

Figure 1: The map-imagery integration without alignment 

a) Orthoimagery with the area of 
interest highlighted 

b) ESRI street map (whose geo-coordinates  
are unknown) 

           c) Imagery with aligned map  

Figure 2: The map-imagery integration with alignment 
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time-consuming process that is made even harder by the fact that 
many of the online sources do not even provide the coordinates of 
the corner points of the maps.  We have developed an approach to 
automatically identify a set of control point pairs by combining 
different sources of information from each of the sources to be 
integrated. In particular, we utilize common vector datasets as 
“glue” to integrate imagery with maps. We first identify feature 
points on imagery by utilizing some information inferred from 
vector dataset, and then we detect the same sort of feature points 
on maps. Finally, we compute the alignment between the two 
point sets. Now that we have a set of control point pairs for the 
map and imagery, we can use the conflation technique described 
in [21] to align the map with the imagery. Our proposed approach 
facilitates the close integration of vector datasets, imagery and 
maps, thus allowing the creation of intelligent images that 
combine the visual appeal and accuracy of imagery with the 
detailed attribution information often contained in diverse maps. 
The remainder of this paper is organized as follows. Section 2 
reviews our previous work on automatically detecting road 
intersection points in imagery. Section 3 illustrates the techniques 
to automatically find road intersection points in street maps. 
Section 4 presents a specialized point pattern matching algorithm 
for finding the mapping between the layout (with relative 
distances) of the intersection points on the imagery and the maps, 
respectively, to generate a set of control point pairs. Section 5 
describes the idea of conflating maps with imagery based on the 
detected control point pairs. Section 6 provides experimental 
results. Section 7 discusses the related work and Section 8 
concludes the paper by discussing our future plans. 

2. PREVIOUS WORK: IDENTIFYING 
INTERSECTIONS ON IMAGERY 

Automatic extraction of road intersection points from imagery as 
feature points is a difficult task due to the complexity that 
characterizes natural scenes [1].  In order to efficiently and 
accurately detect road intersection points on imagery, we utilize 
existing road network vector databases as part of the prior 
knowledge. In general, integrating existing vector data as part of 
the spatial object recognition scheme is an effective approach.  
The vector data represents the existing prior knowledge about the 
data, thus reducing the uncertainty in identifying the spatial 
objects, such as road segments, in imagery.  
In [6, 7], we described several techniques for automatic conflation 

of road vector data with imagery.  The most effective technique 
we found exploits a combination of the knowledge of the road 
network with image processing in a technique that we call 
localized image processing.  With this approach, we first find road 
intersection points from the road vector dataset. For each 
intersection point, we then perform image processing in a 
localized area around the intersection point to find the 
corresponding point in the image. The running time for this 
approach is dramatically lower than traditional image processing 
techniques due to performing image processing on localized areas. 
Furthermore, exploiting the road direction and width information 
improves both the accuracy and efficiency of detecting edges in 
the image.  An issue that arises is that the localized image 
processing may still identify incorrect intersection points, which 
introduces noise into the set of control point pairs. To address this 
issue, we utilized a filtering technique termed Vector-Median 
Filter [7] to eliminate inaccurate control point pairs. Once the 
system has identified an accurate set of control point pairs, we 
utilize rubber-sheeting techniques described in [21] to align the 
vector data with the imagery. With our test sets as described in 
[7], this approach produced an accurate alignment of the vector 
data with the imagery. 
More details about our previous work on vector-imagery 
conflation is provided in [7]. As a result the conflated intersection 
points on the road network can be aligned with the intersection 
points on the imagery. We can then use the conflated intersection 
points as intersection points on the imagery. Figure 3 shows an 
example illustrating the detected intersection points on an image, 
before and after conflating the image with a road network. 

3. IDENTIFYING INTERSECTION 
POINTS ON STREET MAPS 

Since there are few online street maps with known geo-
coordinates, we cannot apply the same localized image 
processing, described in Section 2, to find intersection points on 
maps. This is because we cannot find the corresponding vector 
data for the map, since the map geo-coordinates are unknown. 
Hence, for those maps whose geo-coordinates are unknown in 
advance, we utilize automatic map processing and pattern 
recognition algorithms described below to identify the intersection 
points on maps. 
Ideally, intersection points on street maps could be extracted by 
simply detecting road lines. However, due to the varying thickness 
 

a) Imagery with road network, before conflation b) Detected intersection points on imagery, after conflation

Figure 3: Intersection points automatically detected on imagery  



of lines on diverse maps, accurate extraction of intersection points 
from maps is difficult [19, 23]. In addition, there is often noisy 
information, such as symbols and alphanumeric characters on the 
map, which make it even harder to accurately identify the 
intersection points. To overcome these problems, we adapted the 
automatic map processing algorithm described in [19] to 
skeletonize the maps for extracting intersection points. The basic 
idea is to detect intersection points only on the map that has been 
pre-processed by line thinning algorithms and noise-removal 
procedures. In particular, the process can be divided into the 
following subtasks: (1) isolate map data by a threshold, (2) 
decrease line width by thinning algorithms, such as [3], (3) 
recognize intersection points by crossing number (CN), the 
number of lines emanating from an intersection point [3], (4) 
remove misidentified intersections caused by noisy information 
(such as symbols and text). The details of the line intersections 
detection algorithm are discussed in [19]. However, this algorithm 
assumes that the roads are illustrated as multiple single-lined 
segments on the maps. Therefore, it is not appropriate for the 
maps where roads are depicted as double lines. In particular, from 
our experiments with diverse single line online street maps, this 
algorithm achieved 65% to 95% precision in identifying road 
intersections, while it worked poorly (with 20% to 30% precision) 
for double line street maps.  
To alleviate this problem, instead of using “crossing 
number(CN)” (for an intersection, its CN must be greater than 
two) to detect intersections, we utilize feature-detection functions 
implemented in OpenCV9 to detect promising points, such as 

corners and distinct points. Then, a verification process is 
conducted to check whether there is any linear structure around 
each detected corner point. If so, the detected point will be 
characterized as an intersection point. We found that our revised 
approach can achieve 76% precision (on average) on our tested 
street maps. 
Figure 4 shows an example illustrating the detected intersection 
points on a map queried from MapQuest. Although our algorithm 
can significantly reduce the rate of misidentified intersection 
points on the maps, it is still possible that both noisy points are 
detected as intersection points and some intersections be missed. 
For example, the point near the lower right corner (the “E” in “E 
Grand Ave”) was mistaken for a road. However, our point 
matching algorithm (described next) can tolerate the existence of 
misidentified intersection points. 

4. POINT PATTERN MATCHING  
So far we have identified a set of intersections on both the street 
map and the imagery. Figure 5 shows an example of the two point 
sets on a map and an image, respectively. The remaining problem 
is to find the mapping between these points in order to generate a 
set of control point pairs. The problem of point pattern matching 
has at its core a geometric point sets matching problem. The basic 
idea is to find the transformation T between the layout (with 
relative distances) of the intersection point set M on  the map and 
the intersection point set S on the imagery. The key computation 
of matching the two sets of points is calculating a proper 
transformation T, which is a 2D rigid motion (rotation and 
translation) with scaling. Because the majority of map and 
imagery are oriented such that north is up, we only compute the 

a) MapQuest map b) Detected intersection points 
Figure 4: Intersection points detected on a map 
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a) A map with some detected intersections b) An image (with detected intersections) covers left map 

Figure 5: Intersection points detected on a map and an image 



translation transformation with scaling. Without loss of generality, 
we consider how to compute the transformation where we map 
from a fraction α of the points on maps to the points on imagery. 
The reason why only a fraction α of the points on the maps is 
considered is that there are misidentified points arising from the 
processes of image recognition (i.e., identifying intersection 
points on maps). Moreover, there may be some missing 
intersection points on the imagery as well. 

The transformation T brings at least a fraction α of the points of M 
(on the map) into a subset of S (on the imagery). Symbolically, 
this implies:  

∃ T and M’ ⊆ M , such that  T(M’) ⊆ S , where | M’ | ≥  α| M | and 
T(M’) denotes the set of points that results from applying T to the 
points of M’. Or equivalently,  

for a 2D point (x, y) in the point set M’ ⊆ M, ∃ T in the matrix 

form 

















1
00
00

TyTx
Sy

Sx  (Sx and Sy are scale factors along x and y 

direction, respectively, while Tx and Ty are translation factors 
along x and y directions,  respectively), such that  

[x, y, 1] * 

















1
00
00

TyTx
Sy

Sx
 = [longitude, latitude, 1] ,   where             

| M’ | ≥  α| M | and the 2D point (longitude, latitude) belongs to 
the intersection point set S on the imagery.  With this setting, we 
do not expect point coordinates to match exactly because of finite-
precision computation or small errors in the datasets. Therefore, 
when checking whether a 2D point p belongs to the point set S, 
we declare that p ∈ S, if there exists a point in S that is within 
Euclidean distance δ of p for a small fixed positive constant δ, 
which controls the degree of inaccuracy. The minimum δ such 
that there is a match of M’ into S is called Hausdorff distance. 
Different computations of the minimum Hausdorff distance have 
been studied in great depth in the computational geometry 
community [8]. We do not seek to minimize δ  but rather adopt an 
acceptable threshold for δ. The threshold is small compared to the 
inter-point distances in S. In fact, this sort of problem was 
categorized as “Nearly Exact” point matching problem in [5].  

Given the parameters α and δ, to obtain a proper transformation T, 
we need to compute the values of the four unknown parameters 
Sx, Sy, Tx and Ty. This implies that at least four different equations 
are required. A straight forward (brute-force) method is first 
choosing a point pair (x1, y1) and (x2, y2) from M, Then, for every 
pair of distinct points (lon1, lat1) and (lon2, lat2) in S, the 
transformation T’ that map the point pair on M to the point pair on 
S is computed by solving the following four equations: 
Sx* x1  + Tx = lon1   Sy* y1  + Ty = lat1  

Sx* x2  + Tx = lon2   Sy* y2  + Ty = lat2 
Each transformation T’ thus generated is applied to the entire 
points in M to check whether there are more than α|M| points that 
can be aligned with some points on S within the threshold δ. The 
above-mentioned process is repeated for each possible point pair 
from M, which implies that it could require examining O(|M|2) 
pairs in the worst case. Since for each such pair, we spend O(|S|2 
|M| log|S|) time searching for a match, this method has a worst 

case running time of O(|M|3 |S|2 log|S|). The advantage of this 
approach is that we can find a mapping (if the mapping exists) 
with a proper threshold δ, even in the presence of very noisy data. 
However, it suffers from high computation time. One way to 
improve the efficiency of the algorithm is to utilize randomization 
in choosing the pair of points from M as proposed in [17], thus 
achieving the running time of  O(|S|2 |M| log|S|). However, their 
approach is not appropriate for our datasets because the extracted 
intersection points from maps could include a number of 
misidentified intersection points.  
Assuming that map-scales are provided, we improve the (brute-
force) point matching algorithm by exploiting information on 
direction and relative distances available from the vector sets and 
maps.  The information on direction and distance is used as prior 
knowledge to prune the search space of the possible mapping 
between the two datasets. More precisely, given a point pair (x1, 
y1) and (x2, y2) on M, we need  to only consider pairs (lon1, lat1) 
and (lon2, lat2) in S, such that the ground distance between (x1, y1) 
and (x2, y2) is close to the ground distance between (lon1, lat1) and 
(lon2, lat2). The ground distance between (x1, y1) and (x2, y2) is 
calculated by multiplying their Euclidean distance by map scale. 
Furthermore, the orientations of  (x1, y1) and (x2, y2) should also 
be close to the orientations of  (lon1, lat1) and (lon2, lat2). This 
enhanced algorithm runs in O(|M|3 |S|1.3 log|S|). 
We can further improve the performance by transforming the 
point patterns on maps and imagery to a 2D Euclidean space, 
where the distance measurement is ground distance. The real 
world distance is used between points in the transformed space. 
Therefore, we only consider translation transformation without 
scaling in such space. In particular, the process (as shown in 
Figure 6) can be divided into the following subtasks: (1) Consider 
the points on the maps: choose one point P as origin (0,0), then 
determine the coordinates of other points Qi (Xi, Yi) as follows. Xi 
is the ground distance between P and Qi in east-west orientation, 
while Yi is the ground distance between P and Qi in north-south 
orientation. Note Xi is negative, if Qi is west to P. Yi is negative, if 
Qi  is south to P. (2) Repeat the similar transformation to the 
points on imagery. (3) Compare the two point patterns from these 
two transformed spaces: we now only consider the translation 
transformation T between the two transformed point patterns. The 
revised algorithm runs in O(|M|2 |S| log|S|) and works well in our 
experiments (see Section 6) even in the presence of very noisy 
data.  

5. IMAGE AND MAP CONFLATION  
Now that we have a set of control point pairs for the map and 
imagery, we can deform one of the datasets (the source image) to 
align the other (the target image) utilizing these identified control 
point pairs. Without loss of the generality, we assume that the 
map is the source image, while the orthoimage is the target image.  
To achieve overall alignment of an image and a map, the system 
must locally adjust the map to conform to the image.  It is 
reasonable to align the two datasets based on local adjustments, 
because small changes in one area should not affect geometry at 
long distance.  To accomplish local adjustments, the system 
partitions the domain space into small pieces. Then, we apply 
local adjustments on each single piece.  Triangulation is an 
effective strategy to partition the domain space to define local 
adjustments. There are different triangulations for the control 
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conflation area (i.e., the convex hull formed by control points ) of 
the source image is much larger than that of the target image, the 
rubber-sheeting results will be distorted because the sampling 
frequency is insufficient. We solve this problem by rescaling the 
conflation area on the map and imagery to identical sizes before 
applying triangulation and rubber-sheeting. 
Figure 8 shows the overall approach for conflating imagery and 
maps as described in Sections 2 through 5. First, we automatically 
conflate the road vector data with the orthoimagery to find the 
intersections in the image. Next, we find the road intersection 
points on the street map. Then, we utilize a specialized point 
pattern matching algorithm to align the two point sets and 
conflation techniques to align the imagery with maps. 

6. EXPERIMENTS 
We utilized a set of online street maps and imagery to evaluate 
our approach. The purpose of the integration experiment was to 
evaluate the utility of our algorithms in integrating real world 
data.  We are interested in measuring the accuracy of the 
integration of maps and imagery using our techniques.  To that 
end, we performed several experiments to validate the hypothesis 
that using our techniques we can automatically and accurately 
align maps and imagery. 
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6.2 Experimental Result 
 

We identified 281 intersection points on the image of test data set 
1 (El Segundo, CA) and 240 intersections on the image of test 
data set 2 (St. Louis, MO). Because the tested maps are in diverse 
sizes and scales, the number of points detected on each map is 
different. On average, there are about 60 points on each map and 
we achieved 76%  precision (on average) for identifying road 
intersections on different maps. Since the running time of our 
techniques is mainly dominated by the point matching routine, we 
used the running time of the point matching routine as the overall 
execution time (the query time for retrieving online images or 
maps was not included). In addition, the running time of the point 
matching algorithm mainly depends on the number of road 
intersections on the maps, not on the maps sizes or map scales. 
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e 9: MapQuest map to imagery conflation (semi-
transparent map) for El Segundo, CA 

Figure 10: TIGER map to imagery conflation ( semi-
transparent image) for El Segundo, CA 

  
ure 11: ESRI map to high resolution imagery Figure 12: MapQuest map to high resolution imagery 
he average execution time for conflating a map 
ted intersection points (possibly with some 
ints) using our geospatial point matching routine 
utes. 
ry of maps, the percentage of the tested maps 
ern aligned with the corresponding point pattern 
is shown in Table 2. On average, 87.1% of our 
rately aligned their intersection point set with the 
int pattern on the image. 12.9% of the maps mis-

 image. We noticed that this is because the roads 
 mis-aligned maps are in grid shape with similar 
and some maps cover a smaller area compared 
. For example, the maps available on MapQuest 
mensions. The covered area becomes smaller 
oms in the area of his interest. Hence, there is no 
 the points of such large-scale, small maps. We 

her accuracy by focusing on larger maps where 
ly to be a unique pattern of points. 

n accurate control point pair set for each map. 
these control points to conflate the maps with 
emonstrate the accuracy of our conflation 
 results are shown in Figure 9 to 12. As shown in 

these aligned images, we can annotate spatial objects (e.g., streets) 
on imagery with the attribution information contained in maps. 
In addition, we also conducted a quantitative analysis to our 
conflation results. Towards that end, we randomly selected a set 
of TIGER maps and imagery from both our test data sets. These 
selected maps and imagery cover 14% of our tested area in El 
Segundo, CA and 50% of our tested area in St. Louis, MO, 
respectively. Furthermore, after applying our point pattern 
matching routine against the tested TIGER maps and imagery, we 
accurately obtained aligned control point sets. The reason why we 
chose TIGER maps is that the geographic coordinates are 
provided by the data source. Therefore, we can simply combine 
the TIGER maps with the corresponding imagery based on 
geographic coordinates provided. The integration results were 
then compared with the conflation results by utilizing our 
approach. Our evaluation used all the road intersections in the 
maps and measured the displacement of the road intersections to 
the corresponding road intersections in the imagery. The mean of 
the point displacements are used to evaluate the accuracy of the 
algorithms.  
The experimental results are listed in Table 3 and the 
displacement distributions of the intersections on maps are shown 

tion ( semi-transparent map) for St. Louis, MO conflation ( semi-transparent map) for St. Louis, MO 



in Figure 13.  The X-axis of this Figure depicts the displacement 
between intersection on the maps and the equivalent intersection 
on the image.  The displacement values are grouped every 5 
meters.  The Y-axis shows the percentage of intersections that are 
within the displacement range represented by the X-axis. For 
example, as shown in Figure 13(a), when utilizing our imagery-
map conflation approach to the first test data set, 84% of the road 
intersections on our conflated maps have less than 5 meters 
displacement from the corresponding imagery points.  When 
simply combining original TIGER-maps with imagery, we 
obtained 1.3% points within 5 meters displacement. Furthermore, 
original TIGER-maps have about 93% points with more than 10 
meters displacement, while our conflated maps only have 2.8% 
points with larger than 10 meters displacement. In sum, as shown 
in Table 3, for the first test data set, we aligned the TIGER-maps 
with an average error of 8.35 meters, which is three times better 
than the original TIGER-maps. For the second data set, we 
improved the error 2.2 times over the original TIGER-maps on 
high resolution imagery. 

7. RELATED WORK 
Geospatial data fusion has been one of central issues in GIS [24]. 
Geospatial data fusion requires that the various datasets be 
integrated (without any spatial inconsistencies), resulting in a 
single composite dataset from the integrated elements. Towards 
automatic geospatial data fusion, a vital step is automated 
geospatial data conflation to align multiple geospatial datasets. 
There have been a number of efforts to automatically accomplish 
vector to vector conflation [9, 21, 26] and vector to imagery (or 
map) conflation [2, 11, 15]. Our work significantly differs from 
the previous work in terms of our approach to conflate vector data 
with imagery. These differences are described in detail in [7]. 
Furthermore, there has been relatively little work on automatically 
conflating maps with imagery. In [22], the authors describe how 
an edge detection process can be used to determine a set of 
features that can be used to conflate two image data sets. 
However, their work requires that the coordinates of both image 
data sets be known in advance.  Our work does not assume that 
coordinates for the maps are known in advance, although we do 
assume that we know the general region. Dare and Dowman [10] 
proposed a feature-based registration technique to integrate two 
images. However, their approach requires users to manually select 
some initial control points. Some commercial GIS products, such 
as Able R2V14 and Intergraph I/RASC15 provide the functionality 
of conflating imagery and maps (i.e., raster to raster registration) 
using different types of transformation methods. However, these 
products do not provide automatic conflation, so users need to 
manually pick control points for conflation. 

Our automatic map to imagery conflation approach utilizes a 
specialized point pattern matching algorithm to find the 
corresponding control point pairs on both datasets. The geometric 
point set matching in two or higher dimensions is a well-studied 
family of problems with application to different areas such as 
computer vision, biology, and astronomy [8, 17]. Furthermore, the 
space partition and deformation techniques (e.g., triangulation and 
rubber-sheeting) are also used for image warping [13, 20]. 

8. CONCLUSION AND FUTURE WORK 
Given the huge amount of geospatial data now available, our 
ultimate goal is to be able to automatically integrate this data 
using the limited information available about each of the data 
sources. The main contribution of this paper is the design and 
implementation of a novel data fusion approach to automatically 
conflate street maps with orthoimagery. We use common vector 
data as “glue” to integrate imagery with maps. In particular, our 
approach utilizes the road intersections automatically identified 
on imagery and maps (whose geo-coordinates are unknown in 

Table 3: Comparison of the integration accuracy of conflated maps with the original maps 
 

Dataset Original TIGER-maps Our conflated maps 

Mean point displacement (meters) for test data set 1 27 8.35 

Mean point displacement (meters) for test data set 2 24 10.9 
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Figure 13: The displacement distributions of 

road intersections 

____________________________________________ 
14 http://www.ablesw.com/r2v/ 
15. http://imgs.intergraph.com/irasc/ 



advance), and applies a specialized point matching algorithm to 
compute the alignment between the two point sets. Experimental 
results on the city of El Segundo, CA and the county of St. Louis, 
MO demonstrate that our approach leads to remarkably accurate 
alignments of maps and imagery. The aligned map and imagery 
can then be used to make inferences that could not have been 
made from either the map or the imagery individually. 
We intend to extend our approach in several ways. First, we plan 
to further improve our geospatial point pattern matching, since we 
have noticed that there is a natural similarity between point 
pattern matching and string pattern matching, which is the 
problem of finding a match between a given pattern string and a 
test string. The main issue is how to efficiently convert the 2D 
geospatial points to 1D points without the impact of noisy points 
(e.g., using Hilbert curve [18]). We also plan to enhance our 
intersection detection techniques used on maps. We intend to use 
OCR-related techniques to extract textual information from the 
maps in order to reduce the impact of these alphanumeric 
characters. In addition, these pre-extracted textual information 
(e.g., road names) can be used to label the detected intersections. 
Therefore, we can even further prune the search space of possible 
point pattern matchings by using these labeled intersections. An 
interesting direction with respect to integrating maps is to be able 
to take arbitrary maps with unknown geo-coordinates and 
determine their location anywhere within a city, state, country, or 
even the world. We already have road vector data covering most 
of the world, so the real challenge is developing a hierarchical 
approach to the point matching to make such a search tractable. 
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