
Classification of Raster Maps
for Automatic Feature Extraction

Yao-Yi Chiang and Craig A. Knoblock
University of Southern California

Department of Computer Science and Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292

yaoyichi, knoblock@isi.edu

ABSTRACT
Raster maps are widely available and contain useful geo-
graphic features such as labels and road lines. To extract
the geographic features, most research work relies on a man-
ual step to first extract the foreground pixels from the maps
using the distinctive colors or grayscale intensities of the
pixels. This strategy requires user interaction for each map
to select a set of thresholds. In this paper, we present a
map classification technique that uses an image compari-
son feature called the luminance-boundary histogram and a
nearest-neighbor classifier to identify raster maps with sim-
ilar grayscale intensity usage. We can then apply previ-
ously learned thresholds to separate the foreground pixels
from the raster maps that are classified in the same group
instead of manually examining each map. We show that
the luminance-boundary histogram achieves 95% accuracy
in our map classification experiment compared to 13.33%,
86.67%, and 88.33% using three traditional image compar-
ison features. The accurate map classification results make
it possible to extract geographic features from previously
unseen raster maps.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial Databases and GIS

General Terms
Algorithms, Design

Keywords
Raster Map Classification, Content-Based Image Retrieval,
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1. INTRODUCTION
Due to the popularity of Geographic Information System

(GIS) and high quality scanners, we can now obtain more
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and more raster maps from various sources on the Internet.
For example, the United States Geological Survey (USGS)
distributes various types of scanned maps, such as topo-
graphic maps and thematic maps displaying water resources
through their own website1 and the TerraServer-USA web-
site.2 Map repositories such as the University of Texas Map
Library3 contain information rich scanned maps for many
areas around the globe, including historical scanned maps.
Moreover, in our previous work, we developed an automatic
approach to mining collections of maps from the Web [13].
In that work, we harvest images from image search engines
(e.g., Yahoo Image Search) and then identify raster maps
among the images.

Raster maps are an important source of geospatial infor-
mation. First, raster maps provide geographic features that
are difficult to find elsewhere, such as the landmarks in his-
torical maps. Moreover, for certain types of geographic fea-
tures, raster maps contain the most complete set of data,
such as the USGS topographic maps that have the contour
lines of the entire United States in various scales. However,
because of the variety of image quality (e.g., poor image
quality from scanning and/or image compression processes),
the complexity of maps, and the typical lack of metadata
(e.g., map geocoordinates, map source, original vector data,
etc.), it is difficult for computers to automatically extract ge-
ographic features from the maps and utilize the information
locked in the raster format.

To automatically process the raster maps, much of the re-
search work relies on user input to extract the foreground
pixels (e.g., pixels representing road lines and text labels)
from the maps as a preprocessing step of their feature ex-
traction algorithms. Salvatore and Guitton [15] use a color
classification technique as their first step to extract contour
lines from topographic maps. Cao et al. [1] utilize a preset
grayscale threshold to remove the background pixels from
raster maps and then detect text labels from the maps. Li et
al. [10] utilize an image filter to first extract the“black layer”
from the USGS topographic maps and then work on the
black layers to extract and rebuild the text labels and lines.
Khotanzad et al. [9] utilize a color segmentation method
with user annotations to extract the contour lines from the
USGS topographic maps. Chen et al. [2] later extend the
color segmentation method from Khotanzad et al. [9] to han-
dle common topographic maps (i.e., not limited to the USGS
topographic maps) using local segmentation techniques.

1http://nmviewogc.cr.usgs.gov/viewer.htm
2http://terraserver-usa.com/
3http://www.lib.utexas.edu/maps/



(a) Adjusting thresholds (b) Foreground pixels

Figure 1: Adjusting thresholds in the grayscale
histogram to extract foreground pixels from a
TIGER/Line map

These feature extraction techniques all require prior knowl-
edge of the raster maps and experiments to generate a proper
set of color or grayscale thresholds to first extract foreground
pixels from the maps. In particular, because the raster maps
need to be readable when printed with non-color printers,
the luminance (i.e., the grayscale intensity) is the most rep-
resentative component among the color components by de-
sign, such as the red, green, and blue (RGB) or hue, satura-
tion, and luminance (HSL) components. Therefore, to sep-
arate the foreground pixels from a raster map, a common
approach is to manually examine the grayscale histogram
of the raster map and select the luminance intervals that
separate the foreground pixels from the map background.
For example, Figure 1 shows that we can adjust the thresh-
olds in the grayscale histogram using an image processing
software4 to identify a luminance interval for separating the
foreground pixels from a TIGER/Line map.5

Because of the varieties of image quality and complexity
of raster maps, it is tedious to manually examine every input
map for extracting the foreground pixels from the map. To
minimize the manual work and to enable automatic feature
extraction processes, we need to be able to automatically
reuse the trained map profiles (i.e., the luminance intervals)
on applicable maps. Figure 2 shows a feature extraction
system. The example system includes a map classification
component to eliminate the repetitive manual examination
step and hence the system can automatically process previ-
ously unseen maps if the map is classified as similar to one
of the trained maps. For example, if we have a trained map
profile to extract the foreground pixels from the map shown
in Figure 3(a), the map classification component can auto-
matically select the trained map profile for a new input map
shown in Figure 3(c) to extract the foreground pixels from
the map as shown in Figure 3(d). The solution might seem
to be straightforward with this example of a TIGER/Line
map, where we can simply apply the same set of thresholds
on maps from the same source to extract their foreground
pixels. However, it is difficult to determine the source of
a raster map automatically. To make this problem worse,
even maps from a single map source may need different sets
of thresholds due to the noise from scanning or compression
processes. For example, as shown in Figure 4 and Figure 5,

4We use ImageJ (http://rsbweb.nih.gov/ij/) to demonstrate
the manual approach.
5http://tiger.census.gov/

Figure 2: A feature extraction system with a map
classification component

(a) Trained map (b) Foreground pixels of the
trained map

(c) New input map (d) Foreground pixels of the
new input map

Figure 3: Example maps from TIGER/Line and
their foreground pixels

both topographic maps are from USGS and the colors of
roads are very different from one area to another (the noise
in Figure 5 comes with the original topographic maps down-
loaded from TerraServer-USA). In this example, the topo-
graphic map covering El Segundo, CA requires the lumi-
nance interval of 0 to 184 and the one covering St. Louis
requires the luminance interval of 0 to 36 to extract their
foreground pixels.

In this paper, we developed an image comparison feature,
called the luminance-boundary histogram. We built a map
classification technique based on a nearest-neighbor classi-
fier using the luminance-boundary histogram to compare an
input map with previously trained maps for identifying an
applicable map profile to extract the foreground pixels from
the input map. The luminance-boundary histogram is based
on the spatial relationships between the luminance levels used
in the raster maps (i.e., the luminance usage of an image).
To demonstrate the spatial relationships between luminance
levels, Figure 6 shows two maps from Google Maps, from



(a) A topographic map (b) The detail view

Figure 4: An example USGS topographic map cov-
ering El Segundo, CA

(a) A topographic map (b) The detail view

Figure 5: An example USGS topographic map cov-
ering St. Louis, MO

which we can extract their foreground pixels by applying
the same luminance intervals on the maps’ grayscale his-
togram. The pixels of various luminance levels are used
in the two maps to constitute lines, characters, and back-
ground. Although the number of pixels of each luminance
level is different between Figure 6(a) and Figure 6(b), the lu-
minance usage in both images are similar. For example, the
black pixels that make up the skeletons of the characters are
surrounded by the same set of gray pixels used as shadows
to make the characters stand out against the white pixels
in the two maps. Likewise, the set of gray pixels used to
draw road boundaries are always in between the white road
pixels and light gray background pixels. Therefore, we can
compare the luminance-boundary histograms of raster maps
to identify the maps that have similar luminance usage and
then apply the same map profile to extract their foreground
pixels.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work on map classification features.
Section 3 describes our approach to generate and compare
the luminance-boundary histogram. Section 4 reports on our
experimental results, and Section 5 presents the conclusion
and future work.

2. RELATED WORK ON MAP CLASSIFI-
CATION FEATURES

One approach for classifying raster maps is based on the
metadata of the maps (e.g., map names, production time,
location, geocoordinates, themes, etc.). The metadata can
be manually specified or generated automatically from the
surrounding text of the raster maps in the document where
the map was obtained (e.g., a web page or an article)[8].
Map classification using metadata helps to answer queries
such as finding the historical raster maps of a specific region
for a specific year, but does not enable our goal to iden-
tify maps sharing the same luminance usage. On the other

(a) Area one (b) Area two

Figure 6: The spatial relationships between lumi-
nance levels are similar in the two images from
Google Maps

hand, our map classification technique compares the image
content of raster maps using the luminance-boundary his-
togram, which identifies the raster maps that share similar
spatial relationships between their luminance levels. In this
section, we focus on reviewing image features used to find
similar images and compare these image features with our
luminance-boundary histogram.

The research on comparing image content to find simi-
lar images is called content-based image retrieval (CBIR),
which has been a very active research topic [16]. Generally,
the image features used to compare two images for identi-
fying the similarity between them fall into one of the three
categories: shape features, texture features, and color fea-
tures. Shape features are used for recognizing objects of
similar shapes in images, such as using the histogram of ori-
ented gradient (HOG) descriptors for pedestrian detection
from photos [7]. Since objects of the same shape in two maps
can be drawn with different colors, the fact that two raster
maps both have objects of the same shape does not indicate
the similarity between their luminance usage. For the tex-
ture features, a commonly used set is the Tamura texture
features [19], which are based on psychological experiments
on human interpretation of images. The Tamura features
describe the overall image texture, such as the coarseness
and the contrast of the images. Another type of texture fea-
ture first transforms the image into another domain (e.g.,
the frequency domain) and then generates descriptions of
the image textures using the transformed image, such as
the Gabor wavelet transform features [11]. Other texture
features are based on the edge detectors such as the edge
histogram descriptor [12], which splits the image into small
regions and generates the edge histogram for each region.
For our problem of classifying the raster maps based on their
luminance usage, using the texture features that are gener-
ated from the whole image to represent the overall texture
of an image does not help much since two images with sim-
ilar textures (e.g., contrast) do not necessarily share similar
luminance usage. Instead, we utilize the luminance differ-
ences locally around each luminance level in the image to
build the luminance-boundary histogram.

For the color features, the three major ones are the color
histogram, color moments, and color-coherence vectors. These
color features can work on any single or combined color com-
ponents, such as using only the H or V component from the
HSV color domain or a weighted combination of the R, G,
and B component from the RGB color domain. If only the V
component or a specific RGB combination is used, the color
features then represent the luminous intensities in the im-



age; otherwise, the H component only can be quantized and
then used to represent the colors in the image. The color
histogram records the number of pixels used for every color
in an image [18]. For the color histograms of two images to
be similar, the corresponding colors in the two histograms
should have similar numbers of pixels in the images, which is
often not the case with two raster maps sharing similar spa-
tial relationships between their luminance levels. The color
moments [18] are based on statistical analysis and use the
average, standard deviation, and skewness of the color his-
togram as features to describe an image. Since the color mo-
ments are built on the color histogram, the color moments
rely on the assumption that two similar images use simi-
lar numbers of pixels for the colors in the color histogram.
Moreover, the color moments require manual adjustments
and experiments to tune the weights of each of the statistic
components. The color-coherence vectors [14] incorporate
the sizes of color regions into the color histogram and usu-
ally produce better and more robust results among the three
color features. However, the region size needs to be tuned
to achieve the best result and the size parameter cannot be
intuitively applied to compare raster maps.

These color features capture some concepts of the color
or luminance usage (depends on the choice of color compo-
nents) in the raster map, such as the type of colors or lumi-
nous intensities used in the images or in a region smaller or
larger than a predefined size. However, these color features
do not take into account the spatial relationships between
colors or luminance levels used in the image, and hence do
not help much on finding raster maps with similar lumi-
nance usage. The luminance-boundary histogram requires
no threshold tuning and represents the luminance usage of
a raster map by capturing the spatial relationships between
the map’s luminance levels. We compare the luminance-
boundary histogram with the color histogram, color mo-
ments, and color-coherence vectors in our experiments. The
experiments show that the luminance-boundary histogram
is efficient and produces the best and most robust results
compared to the other color features for classifying raster
maps.

3. RASTER MAP CLASSIFICATION BASED
ON IMAGE CONTENT

In this section, we present our map classification tech-
nique that uses the luminance-boundary histogram and a
nearest-neighbor classifier for identifying raster maps shar-
ing the same luminance interval for extracting their fore-
ground pixels. We describe the technical details to generate
the luminance-boundary histogram and the metric that the
nearest-neighbor classifier uses to compare the luminance-
boundary histograms of two images.

3.1 Generating the Luminance-Boundary His-
togram

We generate two luminance-boundary histograms (LBH)
for an image. The first luminance-boundary histogram is
called the high luminance-boundary histogram (HLBH), in
which the X-axis represents the luminance spectrum and the
Y-axis represents the normalized high luminance-boundary
value of each luminance level in the luminance spectrum. We
compute the high luminance-boundary value of a luminance
level, L, using the luminous intensities that have higher lu-
minous values than L and are adjacent to L. Similarly, we

Figure 7: The approach to generate the high and
low luminance-boundary histograms

generate a second luminance-boundary histogram called the
low luminance-boundary histogram (LLBH), which contains
the normalized low luminance-boundary values. We com-
pute the low luminance-boundary value of a luminance level,
L, using the luminous intensities that have lower luminous
values than L and are adjacent to L.

The HLBH and LLBH are designed to capture the lumi-
nance usage of a raster map (i.e., the spatial relationships
between luminance levels) by exploiting the luminous differ-
ences between adjacent luminance levels in the map. The
HLBH value of a luminance level indicates a higher bound-
ary in the grayscale histogram that separates the luminance
level from its adjacent luminance levels in the raster map.
Similarly, the LLBH value indicates a lower boundary. For
example, a luminance level of 128 with its HLBH value as
10 implies that 138 is the average luminance intensity of the
pixels that have their intensity level higher than 128 and are
around pixels of luminance level 128 in the raster map. For
two maps that have similar luminance usage and share the
same luminance intervals to extract their foreground pix-
els, there are similar boundaries in the grayscale histogram
to separate the two maps’ foreground and background lu-
minous intensities. Therefore, we can compare the LBH of
the new input map and trained maps to determine if any of
the trained map profile can be applied on the new map for
extracting its foreground pixels.

The overall approach to generate the HLBH and LLBH is
shown in Figure 7. We first convert the input raster map to
a grayscale image with 256 luminance buckets (i.e., the lu-
minance spectrum is quantized to 256 levels). Then, we scan
every pixel on the grayscale image to collect the high and
low luminance-boundary values for each luminance bucket
to generate the HLBH and LLBH. The algorithm to com-
pute and normalize the HLBH and LLBH values from a
grayscale image is shown in Table 1. The following subsec-
tions describe the algorithm in detail.

3.1.1 Extracting the Luminance Component
We extract the luminance component from the raster map

by converting the map to a grayscale image. The luminance
is chosen instead of using one or all of the R, G, and B
components or H, S, and L components for two reasons.



Table 1: Pseudo code for generating luminance-
boundary histograms
/* Global variables */
Histogram HLBH, LLBH
Histogram HLBPixelCount, LLBPixelCount
GrayscaleImage GImage
Function GenerateHistogram()

For each row Y in the GImage
For each colum X in the GImage

Luminance L = GImage[X,Y ]
HLBH[L]=HLBH[L] + GetHLBValue(X,Y)
LLBH[L]=LLBH[L] + GetLLBValue(X,Y)

End For
End For
/* Average the histograms*/
Value totalHLB, totalLLB
Foreach Luminance L in the GImage
HLBH[L] = HLBH[L] / HLBPixelCount[L]
totalHLB = totalHLB + HLBH[L]
LLBH[L] = LLBH[L] / HLBPixelCount[L]
totalLLB = totalLLB + LLBH[L]

End Foreach
/* Normalize the histograms*/
Foreach Luminance L in the GImage
HLBH[L] = HLBH[L] / totalHLB
LLBH[L] = LLBH[L] / totalLLB

End Foreach
End Function
/* Return the lowest luminance higher than the
luminance of the center pixel in a 3-by-3 area */
Function GetHLBValue(X, Y)

Luminance LHLB = 256
Luminance Lc = GImage[X,Y ]
For Integer I = −1; I < 2; I++

For Integer J = −1; J < 2; J++
Luminance Ln = GImage[X + I, Y + J ]
IF(Ln < LHLB AND Ln > Lc)
LHLB = Ln

End IF
End For

End For
IF LHLB 6= 256
HLBPixelCount[Lc]++
Return LHLB - Lc

Else
Return 0

End IF
End Function
/* Return the highest luminance lower than the
luminance of the center pixel in a 3-by-3 area */
Function GetLLBValue(X, Y)

Luminance LLLB = -1
. . .

IF(Ln > LLLB AND Ln < Lc)
. . .
IF LLLB 6= -1
HLBPixelCount[Lc]++
Return Lc - LLLB

Else
Return 0

End IF
End Function

(a) The color map (b) The grayscale map

Figure 8: An example map from Google Maps and
the map in grayscale

Figure 9: Luminance levels of sample line pixels
(background pixels are shown in white)

First, using the one-dimensional features (i.e., the L compo-
nent) is more computational efficient than using the three
dimensional features (i.e., the R, G, and B or H, S, and L
components). Second, the luminance component is the most
representative component by design since most of the maps
need to be readable when printed with non-color printers.
For a color in the RGB domain, the luminous intensity is
calculated as follows using the RMY filter:6

LuminousIntensity = R ∗ 0.5 +G ∗ 0.419 +B ∗ 0.081 (1)

Figure 8 shows a color map from Google Maps and the
converted grayscale image of the map. In spite of the grayscale
conversion, the objects on the grayscale maps are still rec-
ognizable, as they are in the original color map.

3.1.2 Computing Luminance-Boundary Values
With the grayscale image, we generate the high and low

luminance-boundary maps (i.e., images contain the luminance-
boundary values) by scanning each pixel in the image. For
each pixel, we search on a 3-by-3 pixel neighborhood to
compute the high and low luminance-boundary values for
the luminance level of the center pixel. Figure 9 shows an
example of a line segment in pixel-view (i.e., every cell is
an image pixel), and the number on each pixel represents
the luminance level of the pixel, such as 0 for black (fore-
ground) and 255 for white (background). To compute the
luminance-boundary values for the pixels identified by the
dashed circles, we search their 8 neighboring pixels (i.e., in
a 3-by-3 pixel neighborhood) that intersect with the circles.

6The RMY filter is one of the existing techniques to compute
the luminance from the RGB color space. More discussions
about the color space conversions can be found in [17]



(a) The high luminance-boundary map

(b) The low luminance-boundary map

Figure 10: High and low luminance-boundary maps

For the high luminance-boundary value, we search in the
3-by-3 pixel area to find the neighboring luminance that
is higher than the luminance of the center pixel, L(X,Y ),
and the difference between the neighboring luminance and
L(X,Y ) is minimum (i.e., the least upper bound). For the
low luminance-boundary value, we search in the same 3-by-
3 pixel area to find the neighboring luminance that is lower
than the luminance of the center pixel, L(X,Y ), and the
difference between the neighboring luminance and L(X,Y )
is minimum (i.e., the greatest lower bound). Formally, the
luminance of a pixel in image M at (X,Y ) is L(X,Y ), and
Du,v∈{−1,0,1} represent the eight luminance differences be-
tween the pixel and its neighboring pixels in the 3-by-3 area.
The high luminance-boundary value of the pixel, M(X,Y ),
is the smallest positive number in Du,v∈{−1,0,1}, where

Du,v∈{−1,0,1} = {L(X + u, Y + v)− L(X,Y )} (2)

If every number in Du,v∈{−1,0,1} is negative or equal to 0,
the high luminance-boundary value is 0 (i.e., no neighboring
pixel has a higher luminance level than the pixel M(X,Y )).
Similarly, the low luminance-boundary value of the pixel
M(X,Y ) is the largest negative number in Du,v∈{−1,0,1}.
If every number in Du,v∈{−1,0,1} is positive or equals to 0,
the low luminance-boundary value is 0 (i.e., no neighboring
pixel has a lower luminance level than the pixel M(X,Y )).
Figure 10 shows the high and low luminance-boundary maps
of Figure 9. The pixels that are crossed out by the dashed
rectangle are the boarder pixels, which are generally not
considered in any convolution type image processing because
of their lack of eight neighboring pixels.

3.1.3 Normalizing Luminance-Boundary Histograms
We sum-up the luminance-boundary values for each lu-

minance level in each of the luminance-boundary maps to

(a) The high luminance-boundary histogram

(b) The low luminance-boundary histogram

Figure 11: The luminance-boundary histograms

generate the normalized high and low luminance-boundary
histograms. The normalized luminance-boundary values of
a luminance level represent the comparative importance of
the luminance level in a raster map since the luminance level
of a highlighted feature have comparatively high contrast
against the luminance levels of the feature’s neighboring pix-
els than other features or the background. The normalized
luminance-boundary values are computed as follows:

Normalized high luminance-boundary value:

nHLBValuei = HLBValuei/

255X
i=0

HLBValuei (3)

Normalized low luminance-boundary value:

nLLBValuei = LLBValuei/

255X
i=0

LLBValuei (4)

We normalize the luminance-boundary value of each lumi-
nance level by dividing the each of the luminance-boundary
value with the summation of the luminance-boundary value
of every luminance level in the raster map. The normaliza-
tion of the high and low luminance-boundary values are done
separately. Figure 11 shows the two luminance-boundary
histograms after we normalize the high and low luminance-
boundary values of each luminance level in Figure 9.

3.2 Comparing Luminance-Boundary
Histograms

To measure the similarity of two sets of luminance-boundary
histograms from two raster maps, we utilize a nearest-neighbor
classifier that employs a common histogram comparison met-
ric, the L1-distance. Given two maps and their luminance-
boundary histograms HLBH1 , LLBH1 and HLBH2 , LLBH2



the L1 distance between the two sets of luminance-boundary
histograms is defined as:

L1 =

255X
i=0

|HLBH1i −HLBH2i |+ |LLBH1i − LLBH2i | (5)

A smaller distance indicates that the spatial relationships
between luminance levels in one map are similar to the ones
in the other map.

4. EXPERIMENTS
We compared our luminance-boundary histogram with

three traditional color-based features: the color histogram,
the color moments, and the color-coherence vectors. We fol-
lowed the steps in [18] to implement the color histogram and
color moments. Color-coherence vectors were implemented
as described in [14] with the region threshold tuned to 5%.
The raster maps were all quantized in the RGB color space
using 16 color buckets for R, 16 color buckets for G, and
16 color buckets for B (i.e., a total of 4,096 buckets) be-
fore we generated the color histogram, color moments and
color-coherence vectors.

In one experiment, we evaluated the robustness of the
four features using image retrieval queries. In a second ex-
periment, we simulated a map classification task (i.e., the
map classification component shown in Figure 2) to clas-
sify raster maps based on their luminance usage by compar-
ing the maps’ image content using the four features. In
both experiment settings, we used 60 test maps and an
image repository with raster maps collected from various
sources. We collected the 60 test maps from 11 map sources
on the Internet, namely Google Maps, Live Maps, Yahoo
Maps,7 MapQuest Maps,8 USGS topographic maps, Rand
McNally,9 Map24,10 TIGER/Line map, OpenStreetMap,11

Streetmap.co.uk,12 and ViaMichelin.13 Table 2 shows the
map sources, map types, and map counts of each source. We
combined two existing image repositories to create a large
map repository for the two experiments. One image reposi-
tory contained 1,112 raster maps identified in [13]. The other
image repository has 383 images wrapped from Yahoo Im-
age Search and Google Image Search using search keywords
such as “street map” or “Los Angeles map.”

For the ground truth of our experiments, we manually
separated the test maps into 12 classes based on manually
trained map profiles to extract the maps’ foreground pixels.
Initially we created a class for every map source and assigned
every map to a class according to the map’s source since the
raster maps from the same source are most likely to share
a set of thresholds to extract their foreground pixels. Next,
within each class, we manually identified a luminance inter-
val to separate the foreground pixels from a map and tested
the luminance interval on every map in the class. For ex-
ample, Figure 14 shows two maps from Rand McNally and
their foreground pixels after we applied the same thresh-
old setting of 0 to 190. The fact that the two maps share

7http://map.yahoo.com/
8http://www.mapquest.com/
9http://www.randmcnally.com/

10http://www.map24.com/
11http://www.openstreetmap.org/
12http://streetmap.co.uk/
13http://www.viamichelin.com/

Table 2: Test maps and the ground truth

Map Source
Map Map Intensity
Type Counts Interval

Google Maps Digital 5 0–230
Live Maps Digital 5 0–225

Yahoo Maps Digital 5 0–200
MapQuest Maps Digital 5 0–220

USGS topographic maps Scanned 5 0–36
USGS topographic maps Scanned 5 0–184

Rand McNally Digital 5 0–190
Map24 Digital 5 0–215

TIGER/Line Digital 5 0–110
OpenStreetMap Digital 5 0–238
Streetmap.co.uk Digital 5 0–175

ViaMichelin Digital 5 0–234

the same threshold setting indicates that the two maps be-
long to the same class in our ground truth. If one set of
thresholds cannot be applied to every map in one class, we
further divided the class into smaller classes and manually
identified a set of thresholds for each class. Eventually the
maps in one class all shared one set of thresholds to extract
their foreground pixels. For example, we initially assigned
all ten topographic maps from USGS to one class. Then,
we further separated the ten maps into two classes since the
ten maps did not share the same threshold setting to extract
their foreground pixels. Figure 13 shows the foreground pix-
els of the topographic maps after we applied the luminance
interval of 0 to 184 on Figure 4(a) and the luminance in-
terval 0 to 36 on Figure 5(a). The manually trained map
profiles for the test maps are shown in the luminance inter-
val column in Table 2. For the map repository, we manually
examined each map image. We removed the non-map im-
ages and map images that have similar color usage as the
test maps or generated from the same map sources as the
11 test map sources. Therefore, besides the test maps, the
map images in the repository should not be classified into
any of our test classes using the four test features.

4.1 Experiments on Image Retrieval
We first tested the robustness of the luminance-boundary

histogram and the three traditional color-based features as
follows: First, after every test map was inserted into the
image repository, we removed one class of test maps from
the repository and reinserted one test map from the removed
class into the image repository as the target map. Then,
we used the remaining test maps from the removed class to
query the image repository in turn. The repository returned
the query results by ranking the images in the repository
based on their similarity to the query image. The similarity
was computed by comparing the four test features in turn.
Finally, we recorded the rank of the target map in the query
results. For example, as shown in Tabel 2, there were five
test maps from Google Maps, namely G1, G2, G3, G4, and
G5. After we inserted G1 into the image repository, we first
used G2 as the query image. We then recorded the rank of
G1 in the returned query results. Next, we used G3 as the
query image and recorded the rank of G1 in the returned
query results. After G4 and G5 were both used as the query
image, we removed G1 from the repository and inserted G2
into the repository. Then, we used the other four images
as the query images to record the rank of G2. This process



(a) The original map (b) The original map

(c) The foreground pixels (d) The foreground pixels

Figure 12: Example Rand McNally test maps and
their foreground pixels

(a) El Segundo, CA (b) St. Louis, MO

Figure 13: The foreground pixels of the USGS topo-
graphic maps shown in Figure 5(a) and Figure 4(a)

was repeated until every test map had been inserted into
the image repository. As a result, for the 60 images (i.e., 5
maps in a class and there are 12 classes), we conducted 240
queries (i.e., 20 queries for each of the 12 classes) for the
four test features in the image retrieval experiments.

By conducting the image query for every pair of images in
each class, a robust image comparison feature should have a
low average rank and low variation between the ranks from
all queries. Table 3 shows the average ranks and standard
deviations of the results for the four test features. Figure 14
to Figure 16 show sample queries, where the ranks in the
captions are presented in the order of using the luminance-
boundary histogram (LBH), color-coherence vectors (CCV),
the color histogram (CH), and color moments (CM).

Overall, the luminance-boundary histogram did well com-
pared with other color-based features on both the average
rank and the standard deviation. In particular, the luminance-
boundary histogram and color-coherence vectors are much
better and robust (both have low variances) than the color
histogram and color moments since the first two features
both utilize more than just color or luminance. Between the
luminance-boundary histogram and color-coherence vectors,
the average rank using the luminance-boundary histogram

Table 3: Experimental results using the four image
comparison features in 240 queries

Feature Average Ranks σ
Luminance-Boundary

5.95 24.15
Histogram

Color-Coherence Vectors 15 52.14
Color Histogram 28.17 116.85
Color Moments 232.87 239.52

was better, and the difference is statistically significant.14

In addition, the luminance-boundary histogram had lower
variance and no tuning was required.

As shown in Figure 14, the luminance-boundary histogram
handled cases where color-coherence vectors did not work
well. Because the luminance levels of the background used
in Figure 14(a) and Figure 14(b) are very different, color-
coherence vectors that rely on the consistency of region sizes
of the same color showed poor result on classifying these two
images (other color features show even worse results). On
the other hand, since the foreground pixels in the Rand Mc-
Nally maps have a strong luminance level against the back-
ground in both maps, the luminance-boundary histogram
worked well on finding the target map. For a more complex
set of maps shown in Figure 15, the two maps share sim-
ilar size of color regions but different number of colors, so
color-coherence vectors did better than the color histogram
and color moments. Luminance-boundary histograms had
the best rank since the high and low luminance-boundary
values are designed to capture the spatial relationships be-
tween adjacent luminance levels, which are similar between
the two maps.

Figure 16 shows a case where the luminance-boundary
histogram did not have the best result. This is because
there are only a few luminance levels used in the maps, and
the extra luminance levels used to draw the highways and
major roads in the query image have strong high and low
luminance-boundary values. The strong luminance-boundary
value from the extra luminance levels lowered the normalized
luminance-boundary values for the luminance levels shared
by the two maps such as the ones used to draw the road
boarders and the characters. This issue could be resolved if
we further apply a threshold on the luminance-boundary his-
togram to compare only the luminance levels that have pixel
counts larger than a preset percentage. However, the perfor-
mance will then depends on the threshold tuning, which is
similar to color-coherence vectors. Color-coherence vectors
and the color histogram both did well on this query since
the colors that exist in only one of the images have a small
number of pixels compared to the colors shared by the two
images.

4.2 Experiments on Map Classification
In the second experiment, we simulated a map classifica-

tion task to test the classification of raster maps using the
luminance-boundary histogram and the three color-based
features with a nearest neighbor classifier. For an input map,
the map classification component searched the image repos-
itory to find a target map that shared a trained map profile
with the input map to extract their foreground pixels. The
experiments worked as follows: First, after we inserted every

14Using a one-tailed distribution paired t-test (p=0.006)



(a) The query map (b) The target map with
ranks: 1/289/713/275

Figure 14: A query with Rand McNally maps (ranks
are listed as LBH/CCV/CH/CM)

(a) The query map (b) The target map with
ranks: 1/15/269/724

Figure 15: A query with Streetmap.co.uk maps
(ranks are listed as LBH/CCV/CH/CM)

test map into the image repository, we removed only one test
map from the repository and used the removed test map as
the query image. If the first returned map belonged to the
same class as the query image, the classification was success-
ful. Then, we reinserted the query image into the repository
and removed another test map to test the map classification
until every test map had served as the query image. For ex-
ample, we first removed G1 to query the repository (i.e., G1
represents a new input map). If the first returned map was
G2, G3, G4, or G5, then we had a correct classification (i.e.,
we successfully identified an applicable trained map profile
for G1); otherwise, the classification failed. We report the
classification accuracy for each feature. The accuracy is de-
fined as the number of successful classifications divided by
the total number of tested classifications.

In the previous image retrieval experiments, there was
only one target map in the repository. In the map clas-
sification experiments, there were four target maps in the
repository, and if the test feature ranked any of the tar-
get maps as the first map in the returned query results,
the classification was successful. The enlarged pool was a
simulation of a real map classification application since in
practice, the size of any map class grows after we have seen
more maps. In the classification results shown in Table 4, the
luminance-boundary histogram had the highest accuracy of
95% among the features on classifying the raster maps in our
experiments. We missed three maps in the map classification
experiments using the luminance-boundary histogram. Al-
though the enlarged pool contained more diverse maps, the
three maps still suffered from the same issue as the query
shown in Figure 16. We expect this problem to be resolved

(a) The query map (b) The target map with
ranks: 3/1/1/231

Figure 16: A query with OpenSteetMap maps
(ranks are listed as LBH/CCV/CH/CM)

Table 4: Classification results using the four image
comparison features

Feature Accuracy
Luminance-Boundary Histogram 95%

Color-Coherence Vectors 86.67%
Color Histogram 88.33%
Color Moments 13.33%

when there are more maps in each class as the training set
becomes larger. The color histogram also benefited from
the enlarged pool. Despite the fact that the color histogram
had a lower average rank in the previous test, it had similar
accuracy as color-coherence vectors in the map classifica-
tion experiments. However, the accuracy of color-coherence
vectors and the color histogram were both lower than the
luminance-boundary histogram.

4.3 Efficiency
We implemented our experiments using Microsoft .Net

running on a Microsoft Windows 2003 Server powered by a
3.2 GHz Intel Pentium 4 CPU with 4GB RAM. We recorded
the computation time for generating the two luminance-
boundary histograms and color-coherence vectors as the com-
parison for efficiency. Both features can be generated us-
ing a single-pass on the image. The smallest test image
in pixels is 130-by-350 and the largest image is 3000-by-
2422. With 1,949 images, it took 428 seconds to generate
the luminance-boundary histograms and 805 seconds to gen-
erate color-coherence vectors. One of the dominant factors
for the time differences was that our luminance-boundary
histograms used 256 buckets while color-coherence vectors
used 4,096 buckets (16 R, 16 G, 16 B). The implementations
of these two features were not optimized and improvements
can still be done to speed up the processes.

5. CONCLUSION AND FUTURE WORK
Identifying the foreground color or luminance in the raster

map is labor intensive since the process requires user input
on specifying foreground pixels in the raster maps, especially
for scanned maps that have numerous colors. Instead, we
present an approach to classify raster maps based on their
luminance usage for reusing existing trained map profiles to
extract foreground pixels from new input maps. The classifi-
cation task is achieved by using the luminance-boundary his-
togram and a nearest-neighbor classifier to compare the im-



age content of two raster maps. In the image retrieval experi-
ments, the luminance-boundary histogram produced robust
results compared with other traditional color features on
finding maps with similar luminance usage. In the map clas-
sification experiments, the luminance-boundary histogram
achieved 95% accuracy compared with the traditional color
features with average ranks from 13.33% to 88.33%. In other
words, we can identify an applicable trained map profile for
95% of the test maps by using the luminance-boundary his-
togram for comparing the input map with existing maps
in the repository and hence make automatic map processing
work practical. In addition, the generation of the luminance-
boundary histogram is efficient without parameter tunings.

In the future, we plan to incorporate modern classifiers
or off-the-shelf CBIR systems with the luminance-boundary
histogram to explore the possibility of enhancing the map
classification. Moreover, we intend to integrate the map
classification component with our current map processing
system that extracts geographic feature from raster maps.
In our previous work, we presented a map processing sys-
tem with an automatic technique for extracting the road
pixels from simpler maps (e.g., digitally generated maps) [6]
and a supervised technique for more complex maps or maps
with poor image quality (e.g., scanned maps, a metro map
contains various types of lines, etc.) [5]. The map pro-
cessing system can process the road pixels to extract road-
intersection templates [3] and then utilize the road inter-
section templates to extract road vectors from the raster
map [4]. By integrating the map classification component
described in this paper with the map processing system, we
will be able to automate the processes for extracting geo-
graphic features from more diversified raster maps and fuse
the maps with imagery and other geospatial data.
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