
Automatic Text Recognition from Raster Maps

Yao-Yi Chiang and Craig A. Knoblock
University of Southern California

Department of Computer Science and Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292

yaoyichi, knoblock@isi.edu

Abstract

Text labels in raster maps provide valuable geospa-
tial information by associating geospatial locations
with geographical names. Although present commer-
cial optical character recognition (OCR) products can
achieve a high recognition rate on documents, text
recognition on raster maps is still challenging due to
the varying text orientations and the overlapping be-
tween text labels. This paper presents an automatic text
recognition approach which focuses on locating indi-
vidual text labels in the map and detecting their ori-
entations and leverages horizontal text recognition of
commercial OCR software. We show that our approach
detects all strings in the test maps and achieves 96.8%
precision and 95.7% recall on character recognition.

1. Introduction

Maps are easily accessible compared to other
geospatial data, such as vector data, databases of geo-
graphical names, geospatial information systems (GIS),
etc. Due to the popularity of high quality scanners
and the Internet, we can now obtain various maps in
raster format for areas around the globe. By converting
the text labels in a raster map to machine-editable text,
we can produce geospatial knowledge for understand-
ing the map covering area where other geospatial data
is not ready accessible. Moreover, we can register other
geospatial data (e.g., imagery) to a raster map [3] and
exploit the recognized text from the map for indexing
and retrieval of the geospatial data.

Text recognition from raster maps is a challenging
task. First, the image quality of the raster maps usually
suffers from compression and scanning noise. Second,
the text labels can have various font types and font sizes
and very often overlap with each other or even other fea-
tures in the maps, such as road lines. Third, classic OCR
research focuses on documents containing text lines in

the same direction (usually horizontal text lines); how-
ever, the text labels within a map do not follow a fixed
orientation.

In this paper, we present a general approach to over-
come these difficulties for recognizing text labels from
raster maps. We first quantize color space of the raster
map and generate a color palette for extracting the pix-
els of text labels (i.e., the text layer) using user spec-
ified colors. Then, we perform connected-component
analysis on the text layer to identify characters, group
characters into strings, and split overlapping text labels
into individual strings. Finally, we detect the orienta-
tion of the multi-oriented strings and rotate the image of
each individual strings to the horizontal direction. The
string images of horizontal direction then can be pro-
cessed using commercial software for recognizing the
text. We tested on two maps with 1,655 characters and
308 words of varying text fonts and sizes and show that
we can achieve accurate recognition rates automatically.

The remainder of this paper is organized as follows.
Section 2 discusses related work on text recognition
from raster maps. Section 3 presents our approach to
detect and prepare string labels for commercial OCR
software. Section 4 reports on our experimental results
and Section 6 presents the discussion and future work.

2. Related Work
Text recognition from raster maps has been an ac-

tive research area. One type of research separates from
classic OCR research (i.e., working on text with the
same orientation) and builds specific character recog-
nition components for handling multi-oriented text la-
bels. Both Deseilligny et al. [4] and Adam et al. [1] uses
rotation-invariation features to compare the target string
with trained character samples for recognizing text la-
bels from raster maps. These methods require intensive
training, such as providing sample characters for each
test map.

For the techniques that employ classic OCR method



as their character recognition components, Li et al. [6]
identify the graphics layer and text labels using
connected-component analysis and extrapolate the
graphics layer to remove the lines that overlap with
characters within each identified text label. Then, a
template-matching based OCR component is used to
recognize characters from the text labels. Cao and
Tan [2] also analyze the geometry properties of the
connected component to first separate text labels from
graphics. The separated graphics layer is then decom-
posed into line segments and a size filter is used to re-
cover the character strokes that touch the lines. Finally,
an OCR software from HP is then used to recognize the
text labels. In both [6] and [2], the identified text labels
are manually rotated to the horizontal direction for the
final character recognition tasks.

Pouderoux et al. [8] use component analysis and
string analysis with dynamic parameters generated from
the geometry of the connected components to identify
strings in the raster maps. The strings are then rendered
horizontally for character recognition using the aver-
age angle connecting the centroids of the components
in a string. However, the average angle can vary much
when the characters have very different height or width.
For example, considering the substring ‘afa’ from one
of our test maps, the angle of the line connecting the
centroid of the first ‘a’ and the centroid of ‘f’ is almost
perpendicular to the line connecting ‘f’ and the second
‘a’. On the other hand, we adopt the skew detection
method in [7] to identify the orientation of each string
automatically.

3. Text Labels Recognition

This section describes our techniques to locate
groups of text labels in the map, separate overlapping
labels, and detect the text orientation of each label.

3.1 Extracting Text Pixels

Raster maps usually contain numerous colors due to
the scanning or compression processes. To generate a
color a color palette for extracting the text pixels us-
ing user specified colors, we apply color segmentation
techniques to reduce the number of colors in the maps.
We first apply the Mean-Shift filtering algorithm, which
merges two colors into one by considering the distance
in the color space and the image space. The Mean-Shift
filtering algorithm preserves the object edges in the map
and prevents pixels of two different objects to have the
same color. Next, we utilize a common color quantiza-
tion method called the median-cut [5] to generate a im-
age with maximum 1,024 colors. The quantized image
is present to the user for selecting a set of colors that
represents text in the map; however, if the same color

(a) An example text layer (b) Dilated text layer

(c) Identified strings (d) Split strings

Figure 1. Locating strings in the map

is used on both text and other features, text separation
techniques such as [2] can be used to remove graphics
and preserve text pixels. Figure 1(a) shows an example
of the extracted text layer.

3.2 Identifying Strings
With the extracted text layer, the user provides a

sample string for each of the font size used in the text
layer as follows: the user select a bounding box of a
horizontal string and indicate how many characters are
in the string. We then compute the character width and
character spacing of each font size using the width of
the bounding box and the number of characters. If more
than one font size is used in the text layer, we sepa-
rate the text layer into sub-text layers by performing a
connected-component analysis with a size threshold on
every connected component. Therefore, every sub-text
layer should contain characters with similar size.

To group characters in each sub-text layer into string,
we use the dilation operator as in [2] to merge nearby
characters. The iteration of the dilation operator is de-
termined by the character spacing. Figure 1(b) shows
the results of merged characters and Figure 1(c) shows
the identified strings in red rectangles. As note in [2],
the dilation operator has the benefit on identifying
curved strings, but it also merged two nearby strings.



Figure 2. Splitting merged strings

To separate merge strings, we first perform a
connected-component analysis within each of the
merged strings and use the distance transformation to
calculate the pixel distance between each connected
component in a merged string. Two connected com-
ponents are linked if the distance in pixel between them
is smaller than a threshold, which is also determined by
the character spacing. Next, we start to trace the con-
nected component following the links in each merged
string and identify individual strings. Figure 2 shows
a merged string, where ‘W’ overlaps ‘n’ and ‘T’ over-
laps with ‘y’. To split the merged string, we identify
two types of connected component as splitting points:
First, the ones that have more than three links, such as
‘Ty’. Second, the ones those constitute an angle smaller
than a threshold with their neighbors, such as ‘Wn’ and
its neighbors ‘a’ and ‘A’. The angle between three con-
nected component are calculated using the centroid of
each connected component. In the case that three con-
nected components of the same height constituting a
straight label, the angle is 180 degree. However, since
the connected components have various heights, we use
an angle threshold of 145 degree to prevent breaking a
continuous string. For the maps with curvy labels, we
use an angle threshold of 125 degree to preserve curvy
labels. After we identify the splitting points, we can
produce individual strings as shown in the right side of
Figure 2.

3.3 Detecting String Orientation

Skew correction is very well developed in modern
OCR techniques; however, classic skew correction can
only apply on documents with multiple lines since the
space between lines are exploited to detect the tilt an-
gle [7]. To detect the orientation of each string, we mod-
ify the morphological based skew correction method for
multi-line document in [7] by select different sizes of
structure elements for each string image. We first ap-
ply the closing operator using a structure element of
size equal to the character width plus character spacing.
Then, we rotate the string image from 0 degree to 179
degree and we use the maximum horizontal width of the
rotated string to determine the length of the structure
elements of the erosion operator. Therefore, the ero-

Figure 3. Detecting orientation using mor-
phological operators

sion operator is able to erase a portion of the foreground
pixels when the string is not in the horizontal direction
while not overly elongate to erase every foreground pix-
els in every rotated image. Figure 3 shows examples of
intermediate results of the orientation detection where
the horizontal strings has the most remaining pixels af-
ter we apply the erosion operator.

We only apply the orientation detection technique on
the strings with more than three connected components
since the orientation of short strings can be dominated
by the height of the components. To assign orientation
for the short strings, we search from the centroid of a
short string for nearby strings and use the orientation of
the nearby strings as the short string’s orientation. This
is because short strings in a raster map are usually part
of a longer label. For example, the most common short
strings in our test maps are ‘Av’ as avenue, ‘Dr’ as drive,
’Cir’ as circle, which are all part of a road name.

4. Experimental Setup and Results
We tested our approach on maps from two sources.

The first test map is a digital map (850x850 pixels
each) from Rand McNally (RM map). In addition to
the digital map, we tested our technique on process-
ing commonly accessible scanned maps using a map
tile (2750x2372 pixels) cropped from a scanned maps
(350dpi) published from by International Travel Maps
(ITM map). We applied our techniques in this paper
to identify text labels from the test maps and detect the
orientation of the labels. We generate two images for
one text label by rotating the text label clockwise and
counterclockwise to the horizontal direction according
to its orientation. Then, we selected the correctly ro-
tated string image (i.e., not the upside down one) for the
character recognition task, for which we used a com-
mercial OCR software called ABBYY FineReader 10.

For the RM map, we identified 54 strings and 29 of
them have more than 3 characters and hence are sent
to detect their orientation. After manual verification,
we detected accurate orientation for 28 of the 29 strings
and the orientation offset for the only inaccurate string
are 2 degrees. For the ITM map, we identified 254



Table 1. Character recognition results
Map # of Char. Precision Recall
RM map 258 96.4% 94.9%
ITM map 1,397 96.9% 95.7%

strings and 196 of them are sent to detect their orien-
tation. After manual verification, we detected accurate
orientation for 183 of the 197 strings and the average
orientation offset for the 5 inaccurate strings are only
5.4 degrees. The orientation offset came from shorter
strings or string with symbols such as a quotation mark.

There are 25 strings and 58 strings in the RM map
and the ITM map, respectively, have less or equal to
3 characters and hence we search nearby strings to as-
sign their orientation. Among the 25 strings in the RM
map, 5 of them we cannot find a nearby string to in-
herit the correct orientation. This is because four of the
strings are near the boarder of the map and hence the
short strings do not follow any of the nearby string ori-
entation in the map. The other one of the incorrect ori-
entation is the string ‘Av’ shown in the left-upper part of
Figure 1(a), where a road name, ‘BEND’ is in between
the string ‘Av’ and its counter part ‘man’. Among the 58
short strings in the ITM map, 6 of them we cannot find
a nearby string to inherit the correct orientation. This is
because three of the short strings are near the boarder of
the map and the other three are isolated characters.

Table 1 shows the OCR results on the character level.
The errors were resulting from: 1. We do not have
the orientation of the strings. 2. Overlapping charac-
ters, such as the ‘n ’ and ‘w’ shown in Figure 2. The
problem of missing orientation detection can be done
by performing OCR on multiple degrees to recognize
the characters since there are only a few of strings we
do not detect correct orientation. For the overlapping
text, additional knowledge such as geographical name
database could help as a dictionary to improve the re-
sults. For the string level accuracy, we extracted every
string from both maps. 43 of 54 extracted strings in the
RM map (80%) have all of their characters successfully
recognized. 218 of 254 extracted strings in the ITM
map (86%) have all of their characters successfully rec-
ognized.

5. Discussion and Future Work
In this paper, we present an approach to automati-

cally recognize text labels from raster maps. Our ap-
proach focuses on locating individual strings and de-
tecting string orientation while leverages the advance
of horizontal text recognition of commercial OCR soft-
ware. By doing so, our approach benefits from future
improvement on commercial OCR software. Our ex-
periments show accurate results on detecting the orien-

tation of the identified text labels and recognizing the
text labels. In the future, we plan to include additional
knowledge of the map covering area to build a database
of geographic names and use the database as a dictio-
nary for improving the OCR accuracy on overlapping
characters.

6 Acknowledgments
The author would like to thank Dr. Chia-Hsiang

Yang for his input on the article. This research is based
upon work supported in part by the University of South-
ern California under the Viterbi School Doctoral Fel-
lowship.

References
[1] S. Adam, J. Ogier, C. Cariou, R. Mullot, J. Labiche,

and J. Gardes. Symbol and character recognition:
application to engineering drawings. IJDAR, 3(2):
89–101, 2000.

[2] R. Cao and C. L. Tan. Text/graphics separation in
maps. In Proceedings of the 4th GREC Workshop,
pages 167–177, 2002. ISBN 3-540-44066-6.

[3] C.-C. Chen, C. A. Knoblock, and C. Shahabi. Au-
tomatically and accurately conflating raster maps
with orthoimagery. GeoInformatica, 12(3):377–
410, 2008.

[4] M. P. Deseilligny, H. L. Mena, and G. Stamonb.
Character string recognition on maps, a rotation-
invariant recognition method. Pattern Recognition
Letters, 16(12):1297–1310, 1995.

[5] P. Heckbert. Color image quantization for frame
buffer display. SIGGRAPH, 16(3):297–307, 1982.

[6] L. Li, G. Nagy, A. Samal, S. C. Seth, and Y. Xu.
Integrated text and line-art extraction from a topo-
graphic map. IJDAR, 2(4):177–185, 2000.

[7] L. Najman. Using mathematical morphology for
document skew estimation. SPIE DRR IX, pages
182–191, 2004.

[8] J. Pouderoux, J. C. Gonzato, A. Pereira, and P. Gui-
tton. Toponym recognition in scanned color topo-
graphic maps. In Proceedings of the 9th ICDAR,
volume 1, pages 531–535, 2007.


