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Abstract—Text recognition is difficult from documents that
contain multi-oriented, curved text lines of various character
sizes. This is because layout analysis techniques, which most
optical character recognition (OCR) approaches rely on, do not
work well on unstructured documents with non-homogeneous
text. Previous work on recognizing non-homogeneous text typ-
ically handles specific cases, such as horizontal and/or straight
text lines and single-sized characters. In this paper, we present a
general text recognition technique to handle non-homogeneous
text by exploiting dynamic character grouping criteria based on
the character sizes and maximum desired string curvature. This
technique can be easily integrated with classic OCR approaches
to recognize non-homogeneous text. In our experiments, we
compared our approach to a commercial OCR product using
a variety of raster maps that contain multi-oriented, curved and
straight text labels of multi-sized characters. Our evaluation
showed that our approach produced accurate text recognition
results and outperformed the commercial product at both the
word and character level accuracy.

I. INTRODUCTION

Text recognition, or optical character recognition (OCR),
is an active area in both academic research and commercial
software development. Effective text recognition techniques
are widely used, such as for indexing and retrieval of
document images and understanding of text in pictorial
images or videos.

In classic text recognition systems, including most com-
mercial OCR products, the first step is “zoning,” which ana-
lyzes the layout of an input image for locating and ordering
the text blocks (i.e., zones). Next, each of the identified
text blocks containing homogeneous text lines of the same
orientation is processed for text recognition. However, this
zoning approach cannot handle documents that do not have
homogeneous text lines, such as artistic documents, pictorial
images with text, raster maps, and engineering drawings.
For example, Figure 1 shows an example map that contains
multi-oriented text lines of multi-sized characters and no
zones of homogeneous text lines exist.

To process documents with non-homogeneous text, one
approach is to recognize individual characters separately [1,
4, 9], such as utilizing rotation invariant features of specific
character sets for character recognition [4]. However, this
approach requires specific training work and hence cannot

Figure 1. Multi-oriented and multi-sized characters in a raster map from
Rand McNally maps

be easily integrated with the classic, well-developed OCR
techniques that process homogeneous text. Moreover, rec-
ognizing individual characters separately fails to take the
advantage of word context, such as utilizing a dictionary to
help recognize grouped characters that represent meaningful
words.

Instead of recognizing individual characters sepa-
rately, previous work on extracting text lines from non-
homogeneous text for text recognition typically handles
specific cases, such as specific language scripts [8], straight
text lines [5, 10], multi-oriented but similar-sized charac-
ters [5, 6]. In our previous work [3], we presented a text
recognition approach that locates individual multi-oriented
text labels in raster maps and detects the label orientations
to then leverage the horizontal text recognition capability
of commercial OCR software. Our previous work requires
manually specified character spacing for identifying individ-
ual text labels and does not consider multi-sized characters.

In this paper, we build on our previous work [3] and
present a text recognition technique to dynamically group
characters from non-homogeneous text into text strings
based on the character sizes and maximum desired string
curvature. The hypothesis is that characters in a text string
are similar in size and are spatially closer than the characters
in two separated strings. Our text recognition technique does
not require training for specific fonts and can be easily
integrated with a commercial OCR product for processing
documents that contain non-homogeneous text.

II. RELATED WORK

Text recognition from documents that contain non-
homogeneous text, such as from raster maps [7], is a difficult
task, and hence much of the previous research only works
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on specific cases. Fletcher and Kasturi [5] utilize the Hough
transformation to group characters and identify text strings.
Since the Hough transformation detects straight lines, their
method cannot be applied on curved strings. Moreover, their
work does not handle multi-sized characters.

Goto and Aso [6] present a text recognition technique
to handle multi-oriented and curved text strings, which can
have touching characters. Their technique first divides the
input document into columns of equal sizes and then de-
tects connected components within each column for further
dividing the columns into blocks. Then the connected com-
ponents in each block are expanded in various orientations
to compute the local linearity for extracting text strings.
This block-based approach works on touching characters but
requires characters of similar sizes.

Velázquez and Levachkine [13] and Pal et al. [8] present
text recognition techniques to handle characters in various
font sizes, font types, and orientations. Their techniques are
based on detecting straight string baselines for identifying
individual text strings. These techniques cannot work on
curved strings.

Pouderoux et al. [10] present a text recognition technique
for raster maps. They identify text strings in a map by
analyzing the geometry properties of individual connected
components in the map and then rotate the identified strings
horizontally for OCR. Roy et al. [11] detect text lines from
multi-oriented, straight or curved strings. Their algorithm
handles curved strings by applying a fixed threshold on
the connecting angle between the centers of three nearby
characters. Their orientation detection method only allows
a string to be classified into 1 of the 4 directions. In both
[10, 11], their methods are based on the assumption that
the string curvature can be accurately estimated from the
line segments connecting each character center in a string.
However, this assumption does not hold when the string
characters have very different heights or widths. In contrast,
we present a robust technique to estimate the curvature and
orientation of a text string and our technique is independent
from the character size.

III. OVERVIEW OF OUR TEXT RECOGNITION APPROACH

Given a document image, there are three major steps in
our approach for text recognition. First, we extract the text
pixels from the input document. For an input image, the
user provides example text areas where each text area is
a rectangle that contains a horizontal string. The user can
rotate the rectangle to select a text string that is not hori-
zontally placed in the image. Since each rectangle contains
a horizontal string, we exploit the fact that the text pixels
are horizontally near each other to identify the colors that
represent text in the image and use the identified colors to
extract the text pixels [2]. Second, we dynamically group
the extracted text pixels into text strings, which is the main
focus of this paper. Third, with the identified text strings,

we employ our previous work [3] to detect the orientation
of each string and rotate the stings to the horizontal direction
for text recognition using a commercial OCR product.

This paper focuses on the second step of string identifi-
cation, which is described in the next section. The details of
the other steps are described in our previous work [2, 3].

IV. IDENTIFYING INDIVIDUAL TEXT STRINGS

Once we extract the text pixels, we have a binary image
where each connected component (CC) in the foreground is
a single character or a part of a character, such as the top
dot of the ‘i’. To group the CCs into strings, we present the
conditional dilation algorithm (CDA) and Figure 2 shows
the pseudo-code of the CDA.

The CDA performs multiple iterations to expand and
connect the CCs and then uses the connectivity of the
expanded CCs to identify individual text strings. As shown
in the ConditionalDilation function in Figure 2, before the
first CDA iteration, the CDA sets every CC as expandable.
Next, in an iteration, the CDA tests a set of conditions on
every background pixel (the TestConditions sub-function)
to determine if the pixel is a valid expansion pixel: a
background pixel that can be converted to the foreground
for expanding a CC. After an iteration, the CDA evaluates
each expanded CC (the CountExpandableCC sub-function)
to determine whether the CC can be further expanded in the
next iteration and stops when there is no expandable CC.
We describe the test conditions to determine an expansion
pixel and an expandable CC in the remainder of this section.

Character Connectivity Condition An expansion pixel
needs to connect to at least one and at most two characters.
This is because the maximum neighboring characters that
any character in a text string can have is two.

Character Size Condition If an expansion pixel connects
to two characters, the sizes of the two characters must be
similar. For a character, A, and its bounding box, Abx, the
size of A is defined as:

Size =Max(Abx.Height, Abx.Width) (1)

For the characters connected by expansion pixels, the size
ratio between the characters must be smaller than a pre-
defined parameter (the max size ratio parameter). For two
characters, A and B, their bounding boxes are Abx and Bbx,
their size ratio is defined as:

SizeRatio =
Max(Size(A), Size(B))

Min(Size(A), Size(B))
(2)

This character size condition guarantees that every character
in an identified text string has a similar size. We use the size
ratio equal to two because some letters, such as the English
letter ‘l’ and ‘e’, do not necessarily have the exact same
size, even when the same font is used.

1400



// The number of processed iterations!

!

  IterationCounter = 0;!
// The number of expandable connected components!
  Expandable_CC_Counter; !
// CDA parameters!
  double max_size_ratio, max_distance_ratio, !
         max_curvature_ratio; !
!
MainFunction void ConditionalDilation(int[,] image)!
  FOR EACH connected component CC in image!
    CC.expandable = TRUE;!
  DO{ TestConditions(image);!
      CountExpandableCC(image);!
      IterationCounter = IterationCounter+1;  !
  } WHILE(Expandiable_CC_Counter > 0)!
EndMainFunction!
!
SubFunction void TestConditions(int[,] image)!
  FOR EACH background pixel BG in image!
    IF(PassConnectivityTest(BG)&&PassSizeTest(BG)&& !
       PassExpandabilityTest(BG)&&!
       PassStringCurvatureTest(BG))!
      Set BG to Foreground;!
EndSubFunction!
!
SubFunction void CountExpandableCC(int[,] image)!
   FOR EACH expanded connected component ECC in image!
     IF(HasConnectedToTwoECCs(ECC) || !
       IterationCounter > max_distance_ratio*ECC.char_size)!
       ECC.expandable = FALSE;!
     ELSE!
       Expandable_CC_Counter = Expandable_CC_Counter+1;!
EndSubFunction!

!Figure 2. The pseudo-code for the conditional dilation algorithm (CDA)

Character Expandability Condition An expansion pixel
needs to connect to at least one expandable CC and the
expandability of a CC is determined as follows: before the
first CDA iteration, every CC is expandable. After each
iteration, the CDA checks the connectivity of each expanded
CC and if the expanded CC has already connected to two
other CCs, the CC is not expandable.

Next, for the remaining expanded CCs (i.e., the ones
with connectivity less than two), the CDA determines the
expandability of each CC by comparing the number of iter-
ations that have been done and the original size of each CC
before any expansion. This is to control the longest distance
between any two characters that the CDA can connect so
that the characters in two separated strings will not be
connected. For example, in our experiments, we empirically
set the longest distance between two characters to 1/5 of
the character size (the max distance ratio parameter). As a
result, for a character of size equal to 20 pixels, the character
will not be expandable after 4 iterations, which means this
character can only find a connecting neighbor within the
distance of 4 pixels plus 1/5 of the size of a neighboring
CC.

String Curvature Condition If an expansion pixel con-
nects two CCs and at least one of the two CCs has a
connected neighbor (i.e., together as a string with at least
three characters), the curvature of the set of CCs should
be less than the maximum desired curvature. This condition
allows the CDA to identify curved strings and guarantees

that the characters of the text strings in different orien-
tations will not be connected. However, determining the
string curvature without knowing how the characters are
aligned is unreliable. For example, considering the text string
“Wellington”, if we link the mass centers or bounding-box
centers of each character to represent the string curvature,
the line segments linking any two neighboring characters
can have very different orientations since the characters have
various heights, such as the links between “We” and the one
between “el”.

To accurately estimate the curvature of a string, the CDA
first establishes a curvature baseline for the string. For
example, the left image in Figure 3(a) shows an example
string, and the right image shows the rearranged string
as if the example string is straight and in the horizontal
direction. The CDA generates the rearranged string by first
aligning each of the characters vertically and rearranging
the characters’ positions in the horizontal direction so that
the characters are not overlapped. The dashed line in the
right image shows the curvature baseline of “dale”. This
curvature baseline contains two connecting angles: the ones
between“dal” and “ale”.

With the curvature baseline, the CDA determines the
string curvature by comparing the connecting angles in the
original string to the ones in the curvature baseline. For
example, Figure 3(c) shows that θ1 is similar to θ1’ and
θ2 is similar to θ2’ and hence the CDA considers the string
“dale” as a straight string (i.e., every original connecting
angle is similar to its corresponding one). Figure 3(d) shows
an example where θ1 is very different from θ1’ and hence
the CDA considers the string “AvRi” as a curved string.

The CDA uses a curvature parameter to control
the maximum desired curvature of a text string (the
max curvature ratio parameter). If the difference between
one connecting angle of a string and the corresponding angle
in the string’s curvature baseline is larger than the curvature
parameter, the string violates the string curvature condition.
For example, with the curvature parameter set to 30% from
the curvature baseline, any string with curvature within 138◦

(180◦ divided by 130%), to 234◦ (180◦ multiplied by 130%)
will be preserved.

The CDA Output After the CDA stops when there is no
expansion pixel, each connected component of the expansion
results is an identified text string. For example, in Figure 4,
the set of color blobs are the expansion results (each color
represents a connected component) and the black pixels
overlapped with a color blob belong to an identified string. In
Figure 4, the CDA does not group small CCs correctly, such
as the dot on top of the character ‘i’ . This is because these
small CCs violate the character size condition. The OCR
system will recover these missing small parts in the character
recognition step, which is more robust than adopting special
rules for handling small CCs in the CDA.
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(a) The original string (left) and curvature baseline (right) of “dale”

(b) The original string (left) and curvature baseline (right) of “AvRi”

(c) θ1/θ2 is similar to θ1’/θ2’ (d) θ1 is very different from θ1’

Figure 3. Testing the string curvature condition

Figure 4. The CDA output

V. EXPERIMENTS

We have implemented the techniques described in this
paper in our map processing system called Strabo. To
evaluate our technique, we tested Strabo on 15 maps from
10 sources, including 3 scanned maps and 12 computer-
generated maps (directly generated from vector data).1 These
maps contain non-homogeneous text of numeric characters
and the English alphabet. Table I shows the information of
the test maps and their abbreviations used in this section.
Figure 5 shows one example area in a test map.

We utilized Strabo together with a commercial OCR
product called ABBYY FineReader 10 to recognize the
text labels in the test maps. For comparison, ABBYY
FineReader 10 was also tested alone without Strabo. For
evaluating the recognized text labels, we report the precision
and recall at both the character and word levels.

Table II shows the numeric results of our experiments.
Strabo produced higher numbers compared to using only

1The information for obtaining the test maps can be found on: http:
//www.isi.edu/integration/data/maps/prj map extract data.html

Figure 5. A portion of the GIZI map

Table I
TEST MAPS FOR EXPERIMENT

Map Source (abbr.) Map Type # Char/Word
International Travel Maps (ITM) Scanned 1358/242
Gecko Maps (GECKO) Scanned 874/153
Gizi Map (GIZI) Scanned 831/165
Rand McNally (RM) Computer Generated 1154/266
UN Afghanistan (UNAfg) Computer Generated 1607/309
Google Maps (Google) Computer Generated 401/106
Live Maps (Live) Computer Generated 233/64
OpenStreetMap (OSM) Computer Generated 162/42
MapQuest Maps (MapQuest) Computer Generated 238/62
Yahoo Maps (Yahoo) Computer Generated 214/54

ABBYY FineReader 10 in all metrics, especially the recall.
ABBYY FineReader 10 did not do well on identifying text
regions from the test maps because of the multi-oriented
text strings in the maps. ABBYY FineReader 10 alone
could only recognize the stings that are in the horizontal or
vertical directions. Moreover, ABBYY FineReader 10 could
not detect any text region from the Google, OSM, MapQuest,
and Yahoo maps and hence the precision and recall are 0 at
both the character and word levels.

Overall Strabo achieved accurate text recognition results
at both the character and word levels. This is because the
CDA successfully grouped the multi-oriented and multi-
sized characters into individual text strings for OCR. More-
over, the CDA correctly identified curved strings that have
their curvature within the desired curvature ratio (30%), such
as the example shown in Figure 6.

The errors in Strabo’s results came from several aspects:
(i) The poor image quality of the test maps, especially
scanned maps, could result in poor quality of text pixels,
such as broken characters or the existence of non-text
objects in the extracted text pixels. (ii) The CDA might
not correctly identify strings with significant wide character
spacing. For example, Figure 7 the string “Hindu Kush” in
the UNAfg map was not identified correctly. (iii) The CDA
might group characters with non-text objects. If there exist
non-text objects in the CDA input and a non-text object
was close to one end of a string and has a similar size
as the ending character, the CDA would connect the end
character to the non-text object. A connected-component
filter can be used to post-process the extracted text pixel
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Table II
TEXT RECOGNITION RESULTS (P. IS PRECISION AND R. IS RECALL)

Source System Ch. P. Ch. R. Wd. P. Wd. R.

ITM Strabo 93.6% 93.3% 83.3% 82.6%
ABBYY 86.4% 45.6% 57.5% 33%

GECKO Strabo 93.4% 86.3% 83.1% 77.1%
ABBYY 77.8% 41% 66.2% 37.2%

GIZI Strabo 95.1% 77.3% 82% 63.6%
ABBYY 71.3% 16% 51.4% 10.9%

RM Strabo 93.4% 94% 87.9% 84.9%
ABBYY 71.8% 10.4% 23.5% 3%

UNAfg Strabo 91.5% 88% 82.3% 80.2%
ABBYY 65.6% 56% 34.8% 36.5%

Google Strabo 97.3% 91.7% 89.2% 85.8%
ABBYY 0% 0% 0% 0%

Live Strabo 94.7% 93.5% 75.3% 76.5%
ABBYY 51.8% 47.6% 47.8% 53.1%

OSM Strabo 95.4% 77.7% 74.3% 69%
ABBYY 0% 0% 0% 0%

MapQuest Strabo 91.3% 84% 81% 75.8%
ABBYY 0% 0% 0% 0%

Yahoo Strabo 69.7% 63.5% 43.1% 40.7%
ABBYY 0% 0% 0% 0%

Avg. Strabo 92.7% 87.9% 82% 77.5%
Avg. ABBYY 71.9% 30% 46.1% 20.6%

Figure 6. An identified curved string with its rotated image containing
the horizontal string for OCR

for removing this type of error. However, the connected-
component filter would need careful parameter settings and
might also remove characters.

VI. DISCUSSION AND FUTURE WORK

We presented a general text recognition technique for
processing documents that contain non-homogeneous text
lines. This technique handles multi-oriented, curved and
straight text lines of multi-sized characters and requires only
three parameter settings. We show that our technique can be
easily integrated with a commercial OCR product to support
text recognition from documents for which classic layout
analysis techniques do not work. In the future, we plan to
test this text recognition technique on non-English scripts.
We also plan to broaden the coverage of our technique to
handle documents with mostly touching characters, such as
by incorporating a character segmentation method [12].
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