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Abstract Raster maps are easily accessible and con-

tain rich road information; however, converting the road

information to vector format is challenging because of

varying image quality, overlapping features, and typi-

cal lack of metadata (e.g., map geocoordinates). Previ-

ous road vectorization approaches for raster maps typ-

ically handle a specific map series and require signif-

icant user effort. In this paper, we present a general

road vectorization approach that exploits common ge-

ometric properties of roads in maps for processing het-

erogeneous raster maps while requiring minimal user

intervention. In our experiments, we compared our ap-

proach to a widely-used commercial product using 40

raster maps from 11 sources. We showed that overall

our approach generated high quality results with low

redundancy with considerably less user input compared

to competing approaches.

Keywords GIS · raster maps · road vectorization ·
map processing

1 Introduction

For centuries, cartographers have been producing maps,

which contain valuable geospatial information, such as

road lines, text labels, building locations, and contour
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lines. Because of the availability of low cost and high-

resolution scanners and the Internet, we can now obtain

a huge number of maps in raster format from various

sources. For instance, a digital raster graphic (DRG),

which is a georeferenced scanned image of a United

States Geological Survey (USGS) topographic map, can

be purchased from the USGS website or accessed freely

from TerraServer-USA.1 Other map sources, such as

online map repositories like the University of Texas

Map Library,2 also provide information-rich maps and

historical maps for many countries. Websites such as

OpenStreetMap3 and MultiMap4 provide high quality

computer-generated maps produced directly from vec-

tor data with valuable geospatial information, such as

business locations.

Because maps commonly contain road networks, raster

maps are an important source of road information (e.g.,

road geometry), which is especially valuable for areas

where road vector data are not readily available. More-

over, since the road networks exist across various geospa-

tial data sources (e.g., satellite imagery), the road topol-

ogy (e.g., road connectivity) and road geometry ex-

tracted from a raster map can be used as matching

features to align the map and recognized map features

to other geospatial data that contain roads [Chen et al.,

2008; Wu et al., 2007].

Converting the roads in heterogeneous raster maps

to vector format is challenging for a number of reasons:

first, the access to metadata about the maps (e.g., map

geocoordinates) is often not available, which makes it

difficult to obtain prior knowledge about the region for

processing the maps. Second, maps typically contain

1 http://terraserver-usa.com/
2 http://www.lib.utexas.edu/maps/
3 http://www.openstreetmap.org/
4 http://www.multimap.com/
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Fig. 1 The overall approach for extracting road vector data from
heterogeneous raster maps

overlapping layers of geographic features, such as roads,

contour lines, and labels. Thus, the map content is mul-

tilayered and highly complex. Third, the image quality

of raster maps is sometimes poor due to the scanning

and/or image compression processes for creating the

maps in raster format.

In this paper we present an end-to-end approach

to extracting accurate road vector data from full-size

raster maps with minimal user input. Figure 1 shows

the three major steps of our approach: (1) Road Ge-

ometry Extraction, (2) Road Intersection Detec-

tion, and (3) Road Vectorization. These three steps

build on the map processing work in our earlier papers,

which solved specific subproblems (road intersection de-

tection [Chiang et al., 2008], road-intersection-template

extraction [Chiang and Knoblock, 2008], road layer ex-

traction [Chiang and Knoblock, 2009a], and road vec-

torization [Chiang and Knoblock, 2009b]) of the overall

approach.

Beyond the overall integrated approach, this paper

makes a number of additional contributions. First, we

present the complete algorithms for the road layer ex-

traction [Chiang and Knoblock, 2009a], road-intersection-

template extraction [Chiang and Knoblock, 2008], and

road vectorization [Chiang and Knoblock, 2009b] (Sec-

tions 3, 4, and 5). Second, we present fast and scalable

algorithms for generating road geometry from raster

maps that have numerous colors (Section 3.1) and large

image sizes (Section 3.3). Third, we present an approach

to processing full-size maps in the integrated vector-

ization process (Section 5.2). Fourth, we evaluate our

integrated approach to road vectorization and present

experimental results on a variety of maps from diverse

sources with varying image quality and compare our

approach with a commercial product (Section 6).

The remainder of this paper is organized as follows.

Section 2 discusses the related work. Sections 3 to 5

present the three major steps of our overall approach:

road geometry extraction, road intersection detection,

and road vectorization, respectively. Section 6 reports

on our experimental results, and Section 7 presents the

conclusion and future work.

2 Related Work

In this section, we first review the related work on seg-

menting color maps into layers of geographic features.

Then we review the related research on road vector-

ization from raster maps and commercial products for

raster-to-vector conversion.

2.1 Color Image Segmentation for Raster Maps

Leyk and Boesch [2010] present a color image segmen-

tation technique that handles a series of scanned his-

torical maps (Siegfried Maps) by considering the image

plane, frequency domain, and color space. This color

image segmentation technique has only been tested on

maps with similar conditions (e.g., with the same set

of map symbols) and may not work on heterogeneous

raster maps. In our color segmentation process, our ap-
proach handles heterogeneous map types by including

an interactive step for a user to select the quantized

image that best represents the segmented map.

Lacroix [2009] presents the median-shift technique,

which extracts the color palette (i.e., a small set of rep-

resentative colors) from a raster map. This technique

requires a preprocessing step based on the automatic

edge detection, which is prone to color noise. In con-

trast, our approach does not rely on the edge detection

and handles raster maps with poor scan quality.

Henderson et al. [2009] focus on USGS topographic

maps to separate individual thematic layers from the

maps. Their technique is based on the color key (i.e.,

the colors of individual feature layers in the map) that

comes with a series of USGS topographic maps. Our

color segmentation approach handles a variety of raster

maps and does not require the knowledge of the map

color-key, which is generally unavailable for scanned

maps.
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2.2 Research on Road Vectorization from Raster Maps

Much research work has been performed in the field of

extracting graphic features from raster maps, such as

separating lines from text [Cao and Tan, 2002; Li et al.,

2000], detecting road intersections [Chiang et al., 2008;

Habib et al., 1999], extracting road vector data [Bin

and Cheong, 1998; Itonaga et al., 2003], and recognizing

contour lines [Chen et al., 2006; Khotanzad and Zink,

2003] from raster maps.

One line of research on graphic extraction techniques

uses simple techniques to extract the foreground pixels

from raster maps and hence can only handle specific

types of maps. Cao and Tan [2002], Li et al. [2000],

and Bin and Cheong [1998] utilize a preset grayscale

threshold to remove the background pixels from raster

maps and work on the foreground pixels to extract their

desired features. The grayscale-thresholding technique

does not work on raster maps with poor image qual-

ity. In addition, the work of Cao and Tan [2002] and

Li et al. [2000] focuses on recognizing text labels. They

do not process the road pixels further to generate the

road geometry and extract the road vector data. Bin

and Cheong [1998] extract the road vector data from

raster maps by identifying the medial lines of parallel

road lines and then linking the medial lines. The linking

of the medial lines requires various manually specified

parameters for generating accurate results, such as the

thresholds to group medial-line segments and to pro-

duce accurate geometry of road intersections.

Habib et al. [1999] focus on raster maps that con-

tain only road lines to extract road intersections auto-

matically. Their road intersection extraction technique
detects the corner points on the extracted road edges

and then groups the corner points and identifies the

centroid of each group as the road intersection. False-

positive corner-points or intersections of T-shape roads

can significantly shift the centroid points away from the

correct locations.

Itonaga et al. [2003] focus on computer-generated

raster maps that contain only road and background

areas. They exploit the geometric properties of roads

(e.g., elongated polygons) to first label each map area

as either a road or background area. Then they apply

the thinning operator to extract a 1-pixel width road

network from the identified road areas. The distortion

at a road intersection caused by the thinning opera-

tor is corrected by merging the intersecting lines with

a similar orientation, which requires user-specified con-

straints, such as the maximum deviation between two

intersecting lines and the maximum intersecting angle.

Their approach cannot handle scanned maps and they

do not report evaluation results on road vector data.

In our earlier work on road geometry extraction [Chi-

ang et al., 2008], we developed an automatic technique

that utilizes a grayscale-histogram-analysis method to

automatically separate the foreground pixels from raster

maps and then identify the road intersections. The his-

togram analysis method does not handle scanned maps

well since the noise introduced in the scanning process

is sometimes difficult to remove automatically. In addi-

tion, since we use the thinning operator in our previous

work [Chiang et al., 2008], the extracted road intersec-

tions are not accurate when the roads are wide.

In comparison to the previous work that handles

specific types of maps [Bin and Cheong, 1998; Cao and

Tan, 2002; Habib et al., 1999; Itonaga et al., 2003; Li

et al., 2000] and our previous approach [Chiang et al.,

2008], this paper presents a semi-automatic approach,

which includes user training and is capable of handling

diverse types of maps, especially scanned maps. More-

over, we automatically generate accurate road geometry

by detecting and correcting the distorted lines around

road intersections caused by the thinning operator to

handle roads that are wide.

Previous work has developed techniques that in-

clude more sophisticated user training processes for han-

dling raster maps with poor image quality. Salvatore

and Guitton [2004] use a color extraction method as

their first step to extract contour lines from topographic

maps. Khotanzad and Zink [2003] utilize a color seg-

mentation method with user annotations to extract the

contour lines from USGS topographic maps. Chen et al.

[2006] exploit the color segmentation method of Khotan-

zad and Zink [2003] to handle common topographic

maps (i.e., not limited to USGS topographic maps)

using local segmentation techniques. These techniques

with user training are generally able to handle maps

that are more complex and/or have poor image quality.

However, their user-training processes are complicated

and laborious, such as manually generating a set of color

thresholds for every input map [Salvatore and Guitton,

2004] and labeling all combinations of line and back-

ground colors [Khotanzad and Zink, 2003]. In compar-

ison, our semi-automatic approach for extracting road

geometry requires the user to provide a few labels for

road areas, which is simpler and more straightforward.

2.3 Commercial Products for Raster-to-Vector

Conversion

Many commercial products offer the functionality for

raster-to-vector conversion, such as Adobe Illustrator,5

5 http://www.adobe.com/products/illustrator.html
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CorelDraw Graphics Suite,6 and VectorMagic.7 These

commercial products are designed to generate vector-

ized boundaries of homogenous color areas from input

images. For road vectorization from raster maps, we

want to extract the centerlines of road areas and these

products do not support this capability.

There are commercial products that offer centerline

vectorization functionality. Vextractor8 and Raster-to-

Vector9 use line approximation algorithms that gener-

ate vector lines based on the locations of the pixels in-

side road areas. The line approximation algorithms do

not take into consideration the geometry and topology

of the road network and hence the resulting road vec-

tor data are off-center, such as the Vextractor results

shown in Figure 2(a), or have inaccurate road topol-

ogy (i.e., two lines that are connected at an intersec-

tion in the road layer are not necessarily connected in

the road vector data), such as the results shown in Fig-

ure 2(b). Another commercial product called R2V from

Able Software10 is an automated raster-to-vector con-

version software package specialized in digitizing raster

maps. R2V is specifically designed for raster-to-vector

conversion from maps and can handle a variety of map

specific linear features, such as curved roads and con-

tour lines. Figure 2(c) shows more accurate results in

terms of road geometry and topology compared to the

results of Vectractor and Raster-to-Vector.11

To vectorize roads in raster maps using R2V, the

user needs to first provide labels of road colors or se-

lect one set of color thresholds to identify the road pix-

els. The manual work of providing labels of only road

pixels can be laborious in R2V, especially for scanned

maps with numerous colors, and the color thresholding

function does not work if one set of thresholds cannot

separate all of the road pixels from the other pixels. In

comparison, we automatically identify road colors from

a few user labels for extracting the road pixels. After the

road pixels are extracted, R2V can automatically trace

the centerlines of the extracted road pixels and generate

the road vector data. However, R2V’s centerline-tracing

function is sensitive to the road width without man-

ual pre-processing and produces small branches from a

straight line if the line is wide. We detect the road width

automatically and use the detected road information to

generate parameters for identifying accurate road cen-

terlines. In our experiments, we tested R2V using our

6 http://www.corel.com/
7 http://vectormagic.com/home
8 http://www.vextrasoft.com/vextractor.htm
9 http://www.raster-vector.com/

10 http://www.ablesw.com/r2v/
11 In these examples, we gave the three commercial products

the same input image and we used the automatic vectorization

function of each product to generate the sample results.

(a) Vextractor (blue pixels

are the vectorization results
and gray pixels are road ar-

eas)

(b) Raster-to-Vector (black

pixels are the vectorization
results and yellow pixels are

road areas)

(c) R2V (green pixels are the
vectorization results and black

pixels are road areas)

Fig. 2 Sample screenshots of the road vectorization results from
commercial products

test maps and show that our approach generates better

results.

3 First Step: Road Geometry Extraction

In this section, we present our technique for generat-

ing the road geometry from raster maps. This tech-

nique can handle raster maps with poor image qual-

ity, such as scanned maps. We first present a super-

vised approach for extracting road pixels from raster

maps. Next, we describe how we exploit our previous

work [Chiang et al., 2008] to identify the road cen-

terlines from the extracted road pixels automatically.

Finally, since scanned maps are usually large images

(a typical 350 dot-per-inch (DPI) scanned map can be

larger than 6000x6000 pixels), we present an fast algo-

rithm for detecting the road width and road format of

large maps efficiently. This algorithm is an enhanced

version of the Parallel-Pattern-Tracing algorithm from

our previous work [Chiang et al., 2008]

3.1 Supervised Extraction of Road Pixels

There are three major steps for the supervised extrac-

tion of road pixels from raster maps. The first step is
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to quantize the color space of the input image. Then, a

user labels road areas of every road color in the quan-

tized image. Since the quantized image has a limited

number of colors, we can reduce the manual effort in

this user-labeling step. Finally, we automatically iden-

tify a set of road colors from the user labels and gen-

erate a color filter to extract the road pixels from the

raster map. For the non-road map features drawn using

the same color as the roads, we will remove them in the

final step to generate the road geometry (Section 3.2).

We describe the details of each step and the labeling

criteria in the following subsections.

3.1.1 Color Quantization

Distinct colors commonly represent different layers (i.e.,

a set of pixels representing a particular geographic fea-

ture) in a raster map, such as roads, contour lines,

and text labels. By identifying the colors that represent

roads in a raster map, we can extract the road pixels

from the map. However, raster maps usually contain

numerous colors due to the scanning and/or compres-

sion processes and the poor condition of the original

documents (e.g., color variation from aging, shadows

from folding lines). For example, Figure 3(a) shows a

200x200-pixel tile cropped from a scanned map. The

tile has 20,822 distinct colors, which makes it difficult

to manually select the road colors. To overcome this dif-

ficulty, we apply color quantization algorithms to group

the colors of individual feature layers into clusters. Since

the color variation within a feature layer is generally

smaller than the variation between feature layers in a

map, after applying the color quantization algorithms,

we can extract individual feature layers by selecting

specific color clusters.

Our color quantization step includes three algorithms:

the Mean-shift [Comaniciu and Meer, 2002], the Median-

cut [Heckbert, 1982], and the K-means [Lloyd, 1982]

algorithms. The Mean-shift algorithm is first applied

to preserve the edges of map features (e.g., road lines)

while reducing noise. The Median-cut algorithm, which

requires the least computation time among the three

color quantization algorithms, is then applied to fur-

ther quantize the image. The goal of the Median-cut

algorithm is to keep image details in the quantized im-

age, such as the image texture but the goal of our color

quantization is to have a single color representing a sin-

gle feature in the map (i.e., eliminating the image tex-

ture). Therefore, we apply the K-means algorithm to

the result of the Median-cut algorithm to merge simi-

lar colors for removing image details. We explain each

algorithm in the following paragraphs.

The Mean-shift algorithm considers the spatial re-

lationships between colors in the image space and in

the color space (i.e., the image texture) and works in

a multi-dimensional space of the image coordinates, X

and Y, and the HSL color space, hue, saturation, and lu-

minous. We use the HSL color space because of the fact

that hue, saturation, and luminous provide good repre-

sentation of human perception [Cheng et al., 2001]. For

a pixel in the raster map, P (x, y), the corresponding

node in the five-dimensional space (i.e., X and Y from

the image coordinates plus H, S, and L from the color

space) is N(x, y, h, s, l), where h, s, and l represent the

color of P .

To reduce the noise in a raster map, for a pixel,

P (x, y), the Mean-shift algorithm starts from comput-

ing the mean node, M(xm, ym, hm, sm, lm), from N ’s

neighboring nodes. The mean node’s position consists

of the mean values on each of the axes X, Y, H, S,

and L of N ’s neighboring nodes within a local area (we

use a spatial distance of 3 pixels and a color distance

of 25 to define the local area). If the distance between

M and N is larger than a small threshold (we use a

small threshold to limit the running time for the Mean-

shift algorithm to converge), the Mean-shift algorithm

shifts N to M and recalculates the mean node within

the new local area. After the Mean-shift algorithm con-

verges (the distance between the mean node and N is

no longer larger than the threshold), the H, S, and L

values of N are used as P (x, y)’s color. In the example

shown in Figure 3, the Mean-shift algorithm reduces

the number of colors in Figure 3(a) by 72% as shown

in Figure 3(b).

The results after the Mean-shift algorithm can still

have many colors and we utilize the Median-cut after

the Mean-shift algorithm to generate an image with at

most 1,024 colors. The Median-cut algorithm first lo-

cates the minimum box which contains every color in

the input image in the three dimensional HSL space.

Then the algorithm sorts the colors using the color com-

ponent that varies the most (i.e., the longest axis of the

box) and divides the minimum box into two boxes at

the median of the sorted colors. This sort-and-divide

process continues to apply on the new divided boxes

until the total number of boxes is smaller than the de-

sired number of colors in the resulting quantized image.

The colors in the same box of the sort-and-divide result

are then represented by their median color to generate

the quantized image.

To further merge similar colors in the raster maps,

we apply the K-means algorithm to generate a quan-

tized image with at most K colors. The K-means algo-

rithm can significantly reduce the number of colors in a

raster map by maximizing the inter-cluster color vari-
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ance; however, since the K-means algorithm considers

only the color space, it is very likely that the resulting

map has its map features merged with a small K. For

example, Figure 3(c) shows the quantized map with K

as 8 where the text labels have the same color as the

road edges. Therefore, the user would need to select a

larger K to separate different features, such as in the

quantized map in Figure 3(d) with K as 16.

The Median-cut algorithm helps to reduce the run-

ning time of the K-means algorithm by limiting the in-

put number of colors to the K-means algorithm to 1024.

The Median-cut algorithm cannot replace the K-means

algorithm because the Median-cut algorithm keeps im-

age details in the quantized image. For example, as

shown in Figure 4, if we apply the K-means and Median-

cut algorithms directly to the original image, the Median-

cut results shows significant color variation within an

image object, such as the yellow pixels on the orange

roads.

3.1.2 User Labeling

In the user-labeling step, we first generate a set of quan-

tized maps in multiple quantization levels using various

K in the K-means algorithm. Then the user selects a

quantized map that contains road lines in different col-

ors from other features and provides a user label for

each road color in the quantized map. A user label is a

rectangle that should be large enough to cover a road

intersection or a road segment. To label the road colors,

the user first selects the size of the label. Next, the user

clicks on the approximate center of a road line or a road

intersection to indicate the center of the label. The user

label should be (approximately) centered at a road in-

tersection or at the center of a road line, which is the

constraint we exploit to identify the road colors in the

next step. For example, Figure 5(a) shows an example

map and Figure 5(b) shows the quantized map and the

labeling result to extract the road pixels. The two user

labels cover one road intersection and one road segment

and contain the two road colors in the quantized map

(i.e., yellow and white) .

3.1.3 Automatic Identification of Road Colors and

Extraction of Road Pixels

Each user label contains a set of colors, and some of the

colors represent roads in the raster map. We exploit two

geometric properties of the road lines in a user label to

identify the road colors of a given user label, namely

the centerline property and the neighboring property.

The Centerline Property Because the user labels

are centered at a road line or a road intersection, the

(a) An example tile (b) The Mean-shift result

(c) The K-means result,

K=8

(d) The K-means result,

K=16

Fig. 3 An example map tile and the color quantization results

with the color cubes

pixels of a road color are a portion of one or more road

lines that pass through or nearby the image center. For

example, we first separate pixels of individual colors

from the user label shown in the top-right of Figure 5(b)

and the result is a set of six images shown in Figure 6

(background is shown in black) and every decomposed

image contains only one color from the user label. The

pixels in the decomposed images, Image 3, 4, and 5, are

portions of the road lines in the user label.

To exploit the centerline property, for each decom-

posed image, we first detect lines that are constituted

from the connected objects in the image. This is achieved

by applying the Hough transform [Duda and Hart, 1972]

to identify a set of Hough lines from the skeletons of
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Fig. 4 Median-cut algorithm result contains more image details

while K-means result contains more homogenous regions

the connected objects. The Hough transform is a fea-

ture extraction technique that can identify lines (i.e.,

the Hough lines) from pixels that do not necessary rep-

resent every part of the lines. Since the image center

of a user label is the center of a road line or a road

intersection, if a Hough line is detected near the im-

age center, the Hough line is most likely to represent a

portion of the road lines. Hence, we detect the Hough

lines in each decomposed image and compute the aver-
age distance between the detected Hough lines to the

image center to determine if the foreground pixels (non-

black pixels) in a decomposed image represent roads in

the raster map.

Figure 7 shows the detected Hough lines of each de-

composed image, where the Hough lines that are within

a distance threshold to the image centers are drawn in

red and others are drawn in blue (this distance thresh-

old is only used to help explain the idea). In Figure 7,

the decomposed images that contain road pixels (Im-

age 3, 4, and 5 ) have more red lines than blue lines

and hence the average distances between their Hough

lines to their image centers are smaller than the other

decomposed images. Therefore, the decomposed image

that has the smallest average distance is classified as a

road-pixel image (i.e., the color of the foreground pixels

in the decomposed image represents roads in the raster

map). The other decomposed images with their aver-

age distances between 1 pixel to the smallest average

distance are also classified as road-pixel images. This

(a) An example scanned map

(b) The quantized map and user labels (the red boxes and crosses
show the original positions and image centers of the two user labels)

Fig. 5 An example of the supervised extraction of road pixels

criterion allows the user label to be a few pixels off (de-

pending on the size of the user label) from the actual

center of the road line or road intersection in the map,

which makes the user labeling easier. In our example,

Image 5 has the smallest average distance, so we first

classify Image 5 as a road-pixel image. Then, since Im-

age 4 is the only image with its average distance within

a 1-pixel distance to the smallest average distance, we

also classify Image 4 as a road-pixel image.

The Neighboring Property Because the road pix-

els are spatially near each other in a user label, the

pixels of the road colors should be spatially near each

other. For example, the majority of pixels in Image 3

can find an immediate neighboring pixels in Image 4

and 5 and vice versa, but the majority of pixels in Im-

age 0 cannot find an immediate neighbor in Image 3,

4, and 5.

Exploiting the centerline property for the road-pixel

image classification is based on the average distance be-
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Fig. 6 The decomposed images (background shown in black),

each contains one color in the user label shown in the top-right
of Figure 5(b)

Fig. 7 The identified Hough lines using Figure 6 as the input

(background shown in black)

tween the detected Hough lines to the image center. If

the Hough transform detects only a few Hough lines,

the Hough lines constituted from noise pixels can signif-

icantly bias the average distance and hence the image

will not be classified correctly. Therefore, we present

the Edge-Matching algorithm for exploiting the neigh-

boring property to determine if any of the decomposed

images that are not classified as road-pixel images us-

ing the Hough-line method (i.e., Image 0 to 3 ) is a

road-pixel image.

The Edge-Matching algorithm utilizes a road tem-

plate generated using the already classified road-pixel

images and compares the unclassified images with the

road template to identify road-pixel images. In our ex-

ample, the road template is the combination of Image 4

and 5 as shown in Figure 8(a) (background is shown

in black). Next, we use the road template to evaluate

Image 0 to 3 in turn. For a color pixel, C(x, y), in a

given decomposed image to be evaluated, we search a

3x3-pixel neighborhood centered at (x, y) in the image

(a) An example road

template

(b) The Edge-Matching results

Fig. 8 Classifying the decomposed images using the road tem-

plate

of the road template to detect if there exists any road

pixels. If one or more road pixels exist, we mark the

pixel C(x, y) as a road pixel since it is spatially near

one or more road pixels. After we examine every fore-

ground pixel in a given decomposed image, if more than

50% of the foreground pixels in that image are marked

as road pixels, we classify the decomposed image as a

road-pixel image.

Figure 8(b) shows an example of the Edge-Matching

algorithm. The first row shows the foreground pixels of

the Image 0 to 3 (background is shown in black) and

the second row is the match with the road template.

The bottom row shows the results after we apply the

Edge-Matching algorithm to each of the images, where

the non-black pixels are the matched pixels. Only Im-

age 3 has more than 50% of its foreground pixels iden-

tified as matched pixels so we classify Image 3 as a

road-pixel image and discard the others.

We process every user label and identify a set of

road-pixel images from each label. We then scan the

quantized map and extract the pixels that have their

colors as one of the identified road colors as the road

pixels. Figure 9 shows the extracted road pixels of Fig-

ure 5(a). Note that the map features that share the

same color as the road lines are also extracted as the

rectangular area shown in Figure 9. These features will

be removed in the next step when we generate the road

geometry.
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Fig. 9 The extracted road pixels of Figure 5(a)

3.2 Automatic Identification of Road Centerlines

The extracted road layer (i.e., the set of extracted road

pixels) from the previous section can contain non-road

map features, such as area features or text strings, if

the map features are drawn using the same color as the

roads. In this section, we briefly explain our previous

work [Chiang et al., 2008] that we employ for removing

these non-road features and automatically identify the

road geometry.

Concerning the non-road map features of text strings,

text/graphics separation techniques [Cao and Tan, 2002;

Tombre et al., 2002] can be used to separate the text

strings from the extracted road pixels (i.e., linear ob-

jects) . Our previous work uses the text/graphics sep-

aration technique from Cao and Tan [2002] since the

technique was developed and tested for map process-
ing.

To remove the non-road features other than text,

reconnect broken road lines, and generate the road ge-

ometry, we first detect the road width and road for-

mat in the input map, and then we dynamically use

three types of morphological operators: the erosion op-

erator, the dilation operator, and the thinning operator

(see [Pratt, 2001] for a detailed description of the mor-

phological operators). The erosion operator is used to

remove noise objects that are smaller than the road

lines and to temper road areas for generating accurate

road centerlines. The dilation operator is used to ex-

pand road areas for connecting broken road lines and

for filling up holes in the road areas. The thinning oper-

ator is used to extract the centerlines of the roads (i.e.,

the skeleton of the road areas).

The numbers of iterations of these morphological

operators (i.e., the number of times we apply each mor-

phological operator) are decided dynamically based on

the detected road width and road format. For example,

to remove thick non-road features, if road width is 4-

pixel wide, we first remove the road lines by applying

the erosion operator twice with a 3-by-3 structuring el-

ement (or a 5-by-5 structuring element applied once):

one iteration erodes a road line by 2 pixels; one at each

side of the road. Then we apply the dilation operator

to re-grow and obtain the non-road features that are

thicker than road lines. By subtracting the resulting

non-road features from the road layer, we remove the

non-linear features such as the rectangular area in the

upper-right of Figure 9.

Once the non-road features are removed, we use the

dilation operator to expand the road areas and recon-

nect the road lines automatically. Since the expansion

of the road areas should not connect two nearby roads,

the number of iterations of the dilation operator with a

3-by-3 structuring element is half of the detected road

width for single-line format roads. This is because we

assume that two road lines should be at least a road-

width apart in a map.

Concerning double-line format roads, the dilation

operator not only reconnects the broken lines, but also

merges parallel road lines into thick lines in single-line

format. For example, by applying the dilation opera-

tor twice with a 3-by-3 structuring element, the paral-

lel road lines that are 4-pixel apart (i.e., the detected

road width is 4-pixel wide) are merged. This dilation

technique fills up the areas in-between the parallel road

lines if the distance between the road lines and every

pixel in-between the parallel road lines is less than half

of the detected road width. However, for road inter-

section areas, depending on how the intersections are

drawn in the map, the distance between the road lines

and an intersection center can be larger than the half

of the detected road width. In this case, the number of

iterations of the dilation operator needs to be increased

for filling up the areas within road intersections of the

parallel lines.

After the dilation operator, we apply the erosion op-

erator to erode the thickened road lines. Finally, we use

the thinning operator to generate the 1-pixel width road

centerlines (i.e., the road geometry) from the erosion re-

sults. Figure 10 shows the extracted road geometry of

Figure 9.

In this process of extracting the road geometry from

raster maps, the morphological operators used for gen-

erating the road geometry cause distorted lines around

road intersections. As shown in Figure 11, if we apply

the thinning operator directly on the thick lines after

the dilation operator shown in Figure 11(a), the lines

that are near intersections are significantly distorted as

shown in Figure 11(b). Our approach to reduce the ex-

tent of the line distortion is to erode the lines using the
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Fig. 10 The extracted road geometry of Figure 9

(a) An example of thickened
road lines

(b) The road centerlines from
applying only the thinning

operator on (a)

(c) The eroded road lines
from applying the erosion op-

erator on (a)

(d) The road centerlines from
applying both the erosion

and thinning operators on (a)

Fig. 11 Distorted road lines near road intersections caused by

the thinning operator

erosion operator and then apply the thinning operator.

Figure 11(c) and Figure 11(d) show that the extent of

the line distortion is smaller after we apply the erosion

operator; however, the distortion is still not completely

eliminated and will be handled in the next step by ex-

tracting accurate road geometry around intersections.

3.3 Single-Pass Parallel-Pattern Tracing Algorithm

In our previous work [Chiang et al., 2008], we devel-

oped the Parallel-Pattern-Tracing algorithm (PPT) for

identifying the road format (i.e., single-line or double-

line format) and road width of the dominant road type

in the raster map. For example, if 80% of the roads in

the map have the road width as 10 pixels and the other

20% have the road width as 3 pixels, the resulting road

width after the PPT is 10 pixels.

The PPT checks each foreground pixel to determine

if there exists any corresponding pixel in the horizontal

and vertical directions at a certain road width. If we find

a corresponding pixel in each direction, we classify the

pixel as a parallel-pattern pixel of the given road width.

By applying the PPT iteratively from 1-pixel wide road

width to K-pixel wide, we can identify the road width

and road format of the majority of the roads in the

map by analyzing the number of parallel-pattern pixels

at each of the tested road widths.

In our previous work, we implemented the PPT

using two convolution masks. One convolution mask

works in the horizontal direction and the other one

works in the vertical direction to find the corresponding

pixels. The sizes of the convolution masks are designed

to cover the road areas in-between two parallel road

lines: if the road width is X pixels, the size of the con-

volutions mask is Y xY pixels and Y is X × 2 + 1. For

example, if the road width is 2 pixels, the size of the

convolution masks is 5x5 pixels, which means by ap-

plying the convolution masks to a pixel, we check one

pixel at 2-pixel-distance to left (towards the top) of this

pixels, one pixel at 2-pixel-distance to right (towards

the bottom) of this pixels. Note that these convolution

masks can misidentify parallel-pattern pixels if there

are non-road pixels in the image, which is fine because

the PPT does not need every parallel-pattern pixel to

be identified for detecting the road width [Chiang et al.,

2008]

For N foreground pixels, the number of computing

steps to iteratively apply the PPT on the road width

from 1 pixel to K pixel is:

PPT (N,K) = N ×
K∑
r=1

(2r + 1)2 (1)

The time complexity is O(NK3), which requires sig-

nificant computing time when we have a large map (a

large N) and/or we run the PPT with more iterations

(a large K).

To improve the time complexity, we developed the

Single-Pass Parallel-Pattern-Tracing algorithm (SPPT),

which does not rely on the image convolution and only

requires a single-pass scan on the image. Moreover, the

SPPT keeps a record of previously identified parallel

patterns to further reduce the time complexity, which

works as follows: in the previous work, to check whether

there is a parallel pattern for a foreground pixel, P , at
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Fig. 12 The pseudo-code of the SPPT

a distance D, the PPT has to check 4 pixels, 1 pixel

towards the top of P at the distance D, 1 pixel to-

wards the bottom of P at the distance D, 1 pixel to the

left of P at the distance D, and 1 pixel to the right of

P at the distance D. In the SPPT, to check whether

there is a parallel pattern for a foreground pixel, P , at

a distance D, the algorithm checks the parallel-pattern

records and 2 pixels, 1 pixel to the right of P at the

distance D and 1 pixel towards the bottom of P at the

distance D.

Figure 12 shows the pseudo-code of the SPPT. The

SPPT starts from the upper-left pixel in the image and

scans the image one row at a time from left to right.

To check the parallel pattern from 1 to K pixels, for a

foreground pixel, the SPPT first records the existence

of this foreground pixel for the pixels at the distance

from 1 to K pixels to the right and towards the bot-

tom of this foreground pixel (i.e., set the horizontal and

vertical arrays as true in the pseudo-code). Next, the

SPPT checks if the foreground pixel has a previously

found parallel-pattern pixel (i.e., check the horizontal

and vertical arrays using the position of this foreground

pixel) and then checks the pixels at the distance from 1

to K pixels to the right and towards the bottom of this

foreground pixel (i.e., the IsForeground function in the

pseudo-code). The parallel pattern record (i.e., the hor-

izontal and vertical arrays) eliminates searching in the

pixel’s left/top direction. Therefore, for N foreground

pixels, to iteratively apply the SPPT on the road width

from 1 to K pixels wide, the number of steps is:

SPPT (N,K) = 2 ×N ×K (2)

The time complexity is O(NK), which is significant less

than using the convolution masks and enables efficient

processing of large maps.

The PPT keeps one record of the number of parallel-

pattern pixels for each road width for the entire image;

and the overall space complexity for the PPT in addi-

tion to the space for storing the image is:

PPT (N,K) = K (3)

The SPPT keeps tracking whether a foreground pixel is

a parallel-pattern pixel during the process. The tracking

record for each foreground pixel includes an array of size

K for the horizontal direction and an array of size K for

the vertical direction. The overall space complexity for

the SPPT in addition to the space for storing the image

is:

SPPT (N,K) = 2 ×N ×K (4)
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The SPPT trades the space complexity for less compu-

tational steps. The PPT is an exponential time algo-

rithm with linear space complexity while the SPPT is

a linear time algorithm with linear space complexity.

Once we have the SPPT result, we build a parallel-

pattern histogram using the number of parallel-pattern

pixels as the X-axis and the road width as the Y-axis.

We then identify the road width by analyzing the his-

togram to detect peaks in the histogram [Zack et al.,

1977]. The detailed algorithm can be found in [Chiang

et al., 2008].

4 Step Two: Road Intersection Detection

In this section, we describe our techniques for extracting

accurate road geometry around road intersections (i.e.,

road-intersection templates) to then generate accurate

road vector data in a later step. A road-intersection

template represents the road geometry around a road

intersection, which is the position of a road intersection,

the orientations of the roads intersecting at the inter-

section, and the connectivity of the road intersection.

Figure 13 shows the overall approach to automatically

extract accurate road-intersection templates. This pa-

per builds on our previous work [Chiang et al., 2008],

which focuses on extracting positions of road intersec-

tions.

4.1 Generating Road-Intersection Blobs to Label

Distorted Lines

Since the thinning operator produces distorted road ge-

ometry near the road intersections and the road width

determines the extent of the distortion, we can utilize

the extracted road intersections and the road width

to label the locations of the potential distorted lines.

We first generate a blob image with the detected road-

intersection points labeled as individual foreground pix-

els. Then, we apply the dilation operator to grow a

blob for each of the road-intersection points using the

road width as the number of iterations. For example,

Figure 14(a) shows an example map and Figure 14(b)

shows the blob image after we apply the dilation op-

erator where the size of each blob is large enough to

cover the road area of each road intersection in the orig-

inal map. Finally, we overlap the blob image with the

thinned-line image shown in Figure 14(c) to label the

extent of the potential distorted lines as show in Fig-

ure 14(d).

Fig. 13 The overall approach to extract the road-intersection

templates from raster maps

4.2 Identifying and Tracing Road-Line Candidates

To extract accurate road vector data around the in-

tersections, we use the labeled image shown in Fig-

ure 14(d) to detect possible road lines intersecting at

each road intersection (i.e., road-line candidates) and

trace the thinned-line pixels to compute the line ori-

entations. We first identify the contact points between

each blob and the thinned-lines by detecting the thinned-

line pixels that have any neighboring pixel labeled by

the gray boxes. These contact points indicate the start-

ing points of a road-line candidate associated with the

blobs. In the example shown in Figure 14(d), the road

intersection in the second top-left blob has three road-

line candidates starting from the contact points that

are on the top, right, and bottom of the blob.

Once we have the contact points, to detect the road-

line candidates, we present the Limited Flood-Fill al-

gorithm to trace the thinned-lines from their contact

points. Figure 15 shows the pseudo-code for the Limited

Flood-Fill algorithm. The Limited Flood-Fill algorithm

first labels a contact point as visited and then checks

the eight neighboring pixels of the contact point to find

unvisited thinned-line pixels. If one of the eight neigh-

boring pixels is not labeled as visited nor is labeled as

a potential distorted line pixel, the neighboring pixel is
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Fig. 15 The pseudo-code for the Limited Flood-Fill algorithm

(a) An example raster map (b) Road-intersection blobs

(c) Thinned road lines (d) Labeling distortion areas

Fig. 14 Generating a blob image to label the distorted lines

set as the next visit point for the Limited Flood-Fill

algorithm to process.

When the Limited Flood-Fill algorithm processes a

new pixel, it records the position of the pixel to later

compute the road orientation. Since it is very unlikely

the road lines near an intersection are significantly curved,

to trace only straight lines, we limit the number of

pixels that the Limited Flood-Fill algorithm can trace

from each contact point using a parameter called Max-

LinePixel. The Limited Flood-Fill algorithm counts the

number of pixels that it has visited and stops when the

counter is larger than the MaxLinePixel variable.

A smaller value for the MaxLinePixel variable pre-

vents the Limited Flood-Fill algorithm from tracing

curved lines. However, a very small value for the Max-

LinePixel variable does not provide enough pixels for

the Limited Flood-Fill algorithm to compute the road

orientations. For example, if we set the MaxLinePixel

variable to 1 pixel, there will be only eight possible

orientations of the traced lines, which is not practical.

In our approach, we empirically use 5 pixels for the

MaxLinePixel variable to reduce the chance of tracing

curved lines while still having enough pixels to generate

the road orientations. As shown in Figure 16, instead of

tracing the whole curve starting from the two contact

points (i.e., the one on the right and the one on the

bottom), we utilize the MaxLinePixel to ensure that

the Limited Flood-Fill algorithm traces only a small

portion of the thinned-lines near the contact points.

After the Limited Flood-Fill algorithm processes ev-

ery line from each contact point and records the posi-

tions of the line pixels, we utilize the Least-Squares Fit-

ting algorithm to find the linear functions of the lines.

Assuming a linear function L for a set of line pixels

traced by the Limited Flood-Fill algorithm, by minimiz-

ing the sum of the squares of the vertical offsets between

the line pixels and the line L, the Least-Squares Fitting

algorithm finds the straight line L that most represents

the traced line pixels. The computed line functions are

then used in the next step of updating road-intersection

templates to identify actual intersecting road lines and

refine the positions of the road intersections.

4.3 Updating Road-Intersection Templates

There are three possible intersecting cases for the road-

line candidates of one intersection as shown in Fig-

ure 17, where: the left images of the three cases are

the original maps; the middle images are the thinned

lines with the locations of the potential distorted lines

labeled by the blob images; and the right images are the

traced line functions (i.e., the line functions computed

using the Least-Squares Fitting algorithm) drawn on a

Cartesian coordinate plane.

The top row of Figure 17 shows Case One where

all the road-line candidates intersect at one point. The

middle row shows Case Two where the road-line can-

didates intersect at multiple points and the intersect-

ing points are within a distance threshold to the ini-

tially detected road-intersection position. The bottom
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Fig. 16 Tracing only a small portion of the road lines near the

contact points

Fig. 17 The three intersecting cases for updating road-
intersection templates

row shows Case Three where the road-line candidates

intersect at multiple points and some of the intersecting

points are not near the initially detected road-intersection

position.

For Case One, we adjust the position of the road

intersection to the intersecting point of the road-line

candidates. We keep all road-intersection candidates

as the intersecting roads of this road-intersection tem-

plate. The road orientations of this road template are

0 degrees, 90 degrees, and 270 degrees, respectively.

For Case Two, Figure 18 shows a detailed view where:

the solid red dot is the initially detected road-intersection

Fig. 18 Case Two: adjusting the road-intersection position with-
out outliers

position; the green, blue, red, and orange lines are the

road-line candidates; the solid black dots are the can-

didates’ intersecting points; and the semi-transparent

red circle implies a local area with radius as the de-

tected road width. Since the extent of the distortion de-

pends on the road width, the positional offset between

any intersecting point of the road-line candidates and

the initially detected road-intersection position should

not be larger than the road width. Therefore, for case

two, since every intersecting point of the road-line can-

didates are in the semi-transparent red circle, we ad-

just the position of the road-intersection template to

the centroid of the intersecting points of all road-line

candidates. We keep all road-intersection candidates

as the intersecting roads of this road-intersection tem-

plate. The road orientations of this road template are

80 degrees, 172 degrees, 265 degrees, and 355 degrees,

respectively.

For Case Three, when two road intersections are

very close to each other, the road geometry between

them is totally distorted as shown in Figure 19. In this

case, the blobs of the two road intersections merge into

one big blob as shown in Figure 19(d), and we asso-

ciate both road intersections with the four thinned-

lines linked to this blob. Figure 20 shows a detailed

view of Case Three. Since the two intersecting points

where the dashed road-line candidate intersects with

two other road-intersection candidates are more than

a road width away from the initially detected road-

intersection position, we discard the dashed road-line

candidate. We use the centroid of the remaining two in-

tersecting points as the position of the road-intersection

template. Since we discard the dashed road-line can-

didate, the connectivity of this road-intersection tem-

plate is three and the road orientations are 60 degrees,

150 degrees, and 240 degrees, respectively. Case Three

shows how the blob image helps to extract correct road
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(a) An example of road
segments

(b) Thickened lines

(c) Distorted centerlines (d) Merged blobs

Fig. 19 Merged nearby blobs

Fig. 20 Case Three: adjusting the road-intersection position

with outliers

orientations even when an intersecting road line is to-

tally distorted by the thinning operator. This case is not

limited to three intersecting roads. Our approach holds

when the distorted road line has the same orientation

as the lines outside the distortion area. For example, in

Case Three shown in Figure 17, the distorted line is part

of a straight line that goes throughout the intersection

so it has the same orientation as the 240-degree line.

In addition, the intersecting road lines need to have a

similar road width because the road width is used to

determine the outlier of the road-line candidates.

Figure 21 shows example results of the accurately

extracted road-intersection templates and the results

of using the thinning operator only. By utilizing the

knowledge of the road width and road format, we auto-

matically detect and correct the distorted lines around

road intersections caused by the thinning operator and

generate accurate road-intersection templates. Since this

(a) Using the thinning operator only

(b) Accurate road-intersection templates

Fig. 21 Example results compared to using the thinning opera-
tor only

approach is based on the heuristic that the road lines

near an intersection are straight within a short distance

smaller than the MaxLinePixel parameter, for signifi-

cantly curved road lines around the road intersections

(i.e., roads that are curved and shorter than the Max-

LinePixel parameter), the traced line functions would

not be accurate.

5 Step Three: Road Vectorization

In this section, we describe our techniques for vectoriz-

ing the extracted road geometry using the road-intersection

templates. For large raster maps, instead of processing

the entire map at once, we first divide the map into

2000x2000-pixel tiles with overlapping areas on their

connected borders and extract the road vector data for

each tile. Then we combine the road vector data from

each tile and generate the road vector data for the en-

tire map.

5.1 Road Vectorization Using Road-Intersection

Templates

With the knowledge of potential distorted areas and the

accurate positions of the road intersections as shown in

Figures 22(a) and 22(b), we start to trace the road pix-

els in the thinned-line image to generate the road vec-

tor data. The thinned-line image contains three types of

pixels: the non-distorted road pixels, distorted road pix-

els, and background pixels. Figure 22(a) shows the three

types of pixels, which are the black pixels not covered
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(a) Marking distortions and
tracing roads

(b) Extracting accurate
road-intersection templates

(c) Straight-line patterns (d) Extracted road vector

data

Fig. 22 Extracting road vector data from an example map

by the gray boxes, black pixels in the gray boxes, and

white pixels, respectively. We create a list of connecting

nodes (CNs) of the road vector data. A CN is a point

where two lines meet at different angles. We first add

the detected road intersections into the CN list. Then,

we identify the CNs among the non-distorted road pix-

els using a 3x3-pixel window to check if the pixel has

any of the straight-line patterns shown in Figure 22(c).

We add the pixel to the CN list if we do not detect

a straight-line pattern since the road pixel is not on a

straight line.

To determine the connectivity between the CNs,

we developed an eight-connectivity flood-fill algorithm

called the Road-Tracer to trace the road pixels. Fig-

ure 23 shows the pseudo-code of the Road-Tracer. Note

that the Road-Tracer algorithm and the Limited Flood-

Fill algorithm in Figure 15 are both derived from the

traditional image processing flood-fill algorithm, which

is used to determine the pixel connectivity or to fill up

connected areas. The differences between the the Road-

Tracer algorithm and the Limited Flood-Fill algorithm

in this paper are their stopping criteria.

The Road-Tracer algorithm starts from a CN, trav-

els through the road pixels (both non-distorted and dis-

torted ones), and stops at another CN. Finally, for the

CNs that are road intersections, we use the previously

updated road intersection positions as the CNs’ posi-

tions. The CN list and their connectivity are the re-

sults of our extracted road vector data. Figure 22(d)

shows the extracted road vector data. The road vector

data around the road intersections are accurate since

we do not generate any CN using the distorted lines

except the road intersections (i.e., our algorithm does

not record the geometry of the distorted lines) and the

intersection positions are updated using the accurate

road orientations.

5.2 Divide-and-Conquer Extraction of Road Vector

Data

We divide a raster map into overlapping tiles and pro-

cess each tile for extracting its road vector data. Fig-

ure 24 shows an input scanned map and we divide the

desired map region into four overlapping tiles. After we

process all the tiles, we combine the extracted road vec-

tor data from each tile as one set of road vector data

for the entire raster map.

For the extracted road vector data of each tile, we

cut the vector data at the center of the overlapping

areas as the dashed lines shown in Figure 24, and we

discard the vector data located in the areas between

the dashed line and the tile borders. This is because

the extracted road vector data near the image borders

are usually inaccurate from using the image processing

operators (e.g., the morphological operators).

We merge the road vector data from two neighbor-

ing tiles by matching the intersections of the dashed

lines and the road lines (i.e., the cutting points) of the

two neighboring sets of road vector data. For exam-

ple, Figure 24(b) shows two sets road vector data from

two neighboring tiles. We first generate a set of cut-

ting points for the left set of road vector data using the

intersections of the vertical dashed line and the road

lines of the left tile’s road vector data. Then, we gen-

erate the set of cuttings points for the right set of road

vector data. Finally, we merge the two sets of road vec-

tor data by connecting two road lines in the two tiles

ending at the cutting points of the same location as

shown in Figure 24(c) where each of the horizontal ar-

rows point to a matched pair of cutting points shown as

the cross marks. Figure 24(d) shows the merged road

vector data.

We first merge the road vector data of tiles on the

same row from left to right and then we merge the

integrated vector data of each row into the final re-

sults from top to bottom. Note that the divide-and-

conquer approach does not reduce the overall computa-

tional complexity, but introduces additional computa-

tional overhead (i.e., more pixels need to be processed).

However, by dividing the input image into tiles that can

be processed independently, our road vectorization pro-

cess can scale to arbitrarily large images as long as we

can divide the input image into smaller regions. More-

over, since each tile is processed independently, the road
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Fig. 23 The pseudo-code of the Road-Tracer algorithm

vectorization process can take the advantage of multi-

core or multi-processor computers to process the tiles

in parallel.

6 Experiments

In this section, we report on our experiments on the ex-

traction of road vector data from heterogeneous raster

maps using the techniques described in this paper. We

have implemented our overall approach as two com-

ponents in a system called Strabo. The first compo-

nent, called Road Layer Extraction, is the supervised

road-pixel-extraction technique in Section 3 (the first

step, road geometry extraction). This component takes

a raster map as input and extracts the road layer. The

second component, called Road Layer Vectorization, in-

cludes the remaining techniques in Section 3 and the

road intersection detection and road vectorization tech-

niques in Sections 4 and 5. This component takes the

extracted road layer as input and generates the road

vector data.

We tested Strabo on 40 maps from 11 sources. Ta-

ble 1 shows the information of the test maps and their

abbreviations used in this section.12 The ITM, GECKO,

GIZI maps cover the city of Baghdad, Iraq and were

scanned in 350 DPI. The UNIraq map covers the city

of Samawah, Iraq, which is from the United Nations

Assistance Mission for Iraq website13 and provides no

information of scan resolution. The UNAf map covers

Afghanistan and is from the United Nations Assistance

Mission in Afghanistan website.14 The Afghanistan map

12 The detailed information for obtaining the test maps
and the ground truth can be found on: http://www.isi.edu/

integration/data/maps/prj_map_extract_data.html
13 http://www.uniraq.org
14 http://unama.unmissions.org/

Map Source Map Dimension
(map count, abbr.) Type (pixels)

International Travel Maps (6, ITM) Scanned 4000x3636

Gecko Maps (3, GECKO) Scanned 5264x1923

Gizi Map (4, GIZI) Scanned 3344x3608

UN Iraq (9, UNIraq) Scanned 4000x3636

Rand McNally (4, RM) Computer 2084x2756

UN Afghanistan (4, UNAfg) Computer 3300x2550

Google Maps (2, Google) Computer 800x550

Live Maps (2, Live) Computer 800x550

OpenStreetMap (2, OSM) Computer 800x550

MapQuest Maps (2, MapQuest) Computer 800x550

Yahoo Maps (2, Yahoo) Computer 800x550

Table 1 Test maps

shows the main and secondary roads, cities, political

boundaries, airports, and railroads of the nation. The

RM map covers the city of St. Louis, Missouri and is

from Rand McNally.15 The Google, Live, OSM, Map-

Quest, Yahoo maps cover one area in Los Angeles, Cal-

ifornia and one area in St. Louis, Missouri, which are

from Google Maps, Microsoft Live Maps, OpenStreet-

Map, MapQuest Maps, and Yahoo Maps, respectively.

Figure 25 shows examples of the test maps, where the

scanned maps show poor image quality, especially the

Gecko and Gizi maps with the shadows caused by the

fold lines.

6.1 Experimental Setup

This section presents the experimental setup for the

road layer extraction and vectorization components in

Strabo.

15 http://www.randmcnally.com/
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(a) Overlapping tiles

(b) Cutting the overlapping area (gray)

(c) Connecting the cutting points

(d) The merged road vector data

Fig. 24 Merging two sets of road vector data from neighboring

tiles

(a) ITM map (b) GECKO map

(c) GIZI map (d) UNIraq map

(e) RM map (f) UNAfg map

Fig. 25 Examples of the test maps

Road Layer Extraction We first used Strabo to

generate a road layer for each test map automatically.

This automatic technique of Strabo is implemented based

on our previous grayscale-histogram analysis technique [Chi-

ang et al., 2008]. Then we manually checked the road

layer to determine if user intervention was required.

Strabo successfully extracted the road layer from

the last five sources shown in Table 1 and did not

extract correct road layers for the other six sources.

Among the six sources (ITM, GECKO, GIZI, UNIraq,

RM, and UNAfg), four sources correspond to scanned

maps (ITM, GECKO, GIZI, and UNIraq) since the

grayscale-histogram analysis technique could not sep-

arate the foreground pixels from the background. The

other two map sources contain non-road linear features,

which are drawn using the same single-line format as

the roads, and hence the automatically extracted road

layers contain these linear features. To achieve the best
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results for the six sources, we utilized the supervised

technique presented in Section 3.1 to extract the road

layers.

The supervised technique first quantized the maps

from the four scanned-map sources (ITM, GECKO, GIZI,

and UNIraq) to generate quantized images in various

quantization levels (the quantization levels have the

number of colors as 32, 64, 128, and 256, respectively).

We did not apply the color segmentation algorithms

on computer-generated maps (test maps from RM and

UNAfg) before user labeling. This is because the computer-

generated maps contain a smaller number of colors. The

UNAfg map has 90 unique colors and there is only one

color representing both the major and secondary roads

in the map. The RM map has 20 unique colors with 5

colors representing roads. The user starts using Strabo

for the user-labeling task with the quantized image of

the highest quantization level (i.e., the quantized image

that has the smallest number of colors). If the user can-

not distinguish the road pixels from other map features

(e.g., background) in the quantized image, the user se-

lects a quantized image containing more colors (a lower

quantization level) for user labeling.

For comparison, we tested the 40 test maps using

R2V from Able Software. R2V allows the user to use

one set of color thresholds to extract the road pixels

from the map for vectorization. For raster maps that

require more than one set of color thresholds (all of our

test maps except the UNAfg map require more than one

set of color thresholds), the user has to manually specify

sample pixels for each of the road colors, which requires

significant effort. Therefore, for the raster maps that

require more than one set of color thresholds to extract

their road pixels, we used the road layers extracted from

Strabo (which are the same set of road layers used to

test Strabo’s road vectorization function) without using

R2V’s manual pre-processing and post-processing. The

UNAfg map requires only one set of color thresholds to

extract the road pixels using R2V and both R2V and

Strabo generated the same road layer for the UNAfg

map.

Road Layer Vectorization Once the road layers

were extracted, the second component of Strabo then

processed the road layers and automatically generated

the road vector data. For comparison, we utilized “Auto

Vectorize” function in R2V to process the same set of

road layers for generating the road vector data auto-

matically.

6.2 Evaluation Criteria

This section describes the evaluation criteria for the

road layer extraction and vectorization components in

Strabo.

Road Layer Extraction To evaluate the road-

layer-extraction component, we report the number of

user labels that were required for extracting road pix-

els from each map source using Strabo.

Road Layer Vectorization For evaluating the ex-

tracted road vector data from the road-layer-vectorization

component, we report the accuracy of the extraction re-

sults using the road extraction metrics proposed by Heipke

et al. [1997], which include the completeness, correct-

ness, quality, redundancy, and the root-mean-square

(RMS) difference. We had a third-party to manually

draw the centerline of every road line in the maps as

the ground truth.

The completeness is the length of true positives di-

vided by the sum of the lengths of true positives and

false negatives, and the optimum is 100%. The cor-

rectness is the length of true positives divided by the

sum of the lengths of true positives and false positives,

and the optimum is 100%. The quality is a combina-

tion metric of the completeness and correctness, which

is the length of true positives divided by the sum of

the lengths of true positives, false positives, and false

negatives, and the optimum is 100%. The redundancy

is the length of matched extraction minus the length

of matched reference. The redundancy shows the per-

centage of the matched ground truth that is redundant

(i.e., more than one true positive line matched to one

ground-truth line), and the optimum is 0. The redun-

dancy does not depend on the number of line segments

in the matched extraction line or the matched reference.

The RMS difference is the average distance between the

extracted lines and the ground truth, which represents

the geometrical accuracy of the extracted road vector

data.

To identify the length of the true positives, false neg-

atives, and matched ground truth, Heipke et al. [1997]

suggest using a buffer width of half of the road width

in the test data so that a correctly extracted road seg-

ment is in between the road edges as shown in Figure 26.

In our test maps, the roads range from 5 to 12 pixels

wide. We used a buffer width of 3 pixels, which means

a correctly extracted line is no farther than 3 pixels

from the road centerlines. For example, to calculate the

length of the true positives, we first drew the extracted

road vector data using 1-pixel-width lines as the blue

lines shown in the top of Figure 26 (i.e., the length of a

road segment is approximately the number of pixels of

the drawn road line). Then we drew the ground truth
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Fig. 26 Calculating road extraction metrics

lines (the reference roads) using the width as the buffer

width on top of the blue lines as the red box shown in

in Figure 26. The number of blue pixels outside the red

box is the length of false positives and the total number

of blue pixels minus the length of false positives is the

length of true positives. More details on calculating the

metrics can be found in [Heipke et al., 1997].

6.3 Experimental Results

This section presents the experimental results of the

road layer extraction and vectorization components in

Strabo.

Road Layer Extraction Table 2 shows the num-

bers of colors in the images used for user labeling and

the numbers of user labels used for extracting the road

pixels. Strabo did not generate quantized maps for the

RM and UNAfg maps (i.e., no values for their quan-

tized map colors in Table 2) because they contain only

a small number of colors.

For all the scanned maps, only 1 to 9 labels were
needed for Strabo to extract the road pixels. The num-

ber of user labels varied from 1 to 9 because of the

varying complexity of map content and the number of

road colors of the tested map sources. Strabo’s user

labeling function is an interactive process. During the

road-layer-extraction experiments, a user first selected

one or more labels for a map source and then instructed

Strabo to show the layer extraction results using the se-

lected labels. If not all of the road lines were extracted,

the user would provide more labels and then re-examine

the results. This interactive labeling process continued

until all of the road lines were extracted. Since the user

label does not have to contain only road pixels, the user

does not have to carefully avoid including non-road pix-

els in the label and hence does not take a long time to

decide on a label (i.e., usually less than 30 seconds).

In contrast to R2V, which requires manually pro-

viding samples of each road color, Strabo’s interactive

strategy provides a much easier-to-use approach for ex-

tracting road layers from raster maps. Note that if the

color quantization failed to group the road colors into

groups because of poor map quality, as found in some

historical maps, this interactive strategy would not work

well. In this case, a more advanced color segmentation

technique could be used to produce a quantized map

for user labeling [Chiang et al., 2011].

Road Layer Vectorization Table 3 shows the nu-

meric results from using Strabo and R2V to extract

road vector data from the 16 test maps. The average

completeness, correctness, quality, redundancy, and re-

dundancy of Strabo and R2V are shown in the bot-

tom rows of Table 3. Strabo produced more accurate

road vector data with a smaller RMS. We emphasize

the numbers where R2V generated a better result than

Strabo. R2V produced better completeness numbers

for five test maps, but this was because R2V gener-

ated highly redundant lines, while Strabo eliminated

small branches, such as the highway ramps shown in

Figure 27.

R2V could achieve better results if we tuned R2V

with manually specified pre-processing and post-process-

ing functions. To demonstrate the pre-processing and

post-processing functions in R2V for improving the vec-

torization result on the road layer shown in Figure 27(b),

we first manually resized the image to a quarter of the

original size for reducing the thickness of the line ar-

eas. Next, we applied the de-speckle function in R2V

to remove noise objects. We then used the image edit-

ing function in R2V to manually draw lines to fill up

the gaps between broken lines and holes; in this par-

ticular example, we manually drew 14 areas and the

black pixels in Figure 28 shows the edited result. Fi-

nally, we applied the automatic vectorization function

with spline smoothing to generate the results as the

road lines shown in Figure 28. Note that the results

are significantly improved after manual processing, but

the road geometry near the intersections is not accurate

compared to our results shown in Figure 27(c) due to

the fact that Strabo automatically detects and corrects

distorted lines near road intersections.

One limitation of Strabo’s automatic vectorization

process is that the process to generate road geometry

relies on the width of the majority of roads. This can

be seen in Figure 27 where Strabo eliminated small

branches because Strabo detected the road width as

the width of the majority of roads (in Figure 27, the

majority roads are the white roads) and used the de-

tected road width to set up the parameters for gener-

ating the road geometry automatically. As a result, in

the examples in Figure 27, the number of iterations of

the erosion operator was larger than the width of the

small branches so that the branches were eliminated

after applying the erosion operator.
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Map Source Original Map Colors Quantized Map Colors User Labels

ITM 779,338 64 9

GECKO 441,767 128 5

GIZI 599,470 64 9

UNIraq 217,790 64 5

RM 20 N/A 5

UNAfg 90 N/A 1

Table 2 The number of colors in the image for user labeling of each test map and the number of user labels for extracting the road

pixels

Map Source Completeness Correctness Quality Redundancy RMS

ITM (Strabo) 90.02% 93.95% 85.08% 0.85% 3.59

ITM (R2V) 96.00% 66.91% 65.09% 117.33% 13.68

GECKO (Strabo) 93.75% 94.75% 89.12% 0.61% 2.95
GECKO (R2V) 96.52% 76.44% 74.39% 52.64% 8.27

GIZI (Strabo) 92.90% 96.18% 89.59% 0.00% 2.46

GIZI (R2V) 93.43% 95.03% 89.08% 39.42% 11.17

UNIraq (Strabo) 88.31% 96.01% 85.19% 0.00% 6.94

UNIraq (R2V) 94.92% 78.38% 75.22% 18.82% 5.19

RM (Strabo) 96.03% 84.72% 81.85% 1.60% 2.79

RM (R2V) 92.74% 68.89% 65.36% 33.56% 16.03

UNAfg (Strabo) 86.02% 99.92% 85.96% 0.00% 3.68
UNAfg (R2V) 88.26% 99.92% 88.20% 12.36% 3.98

Google (Strabo) 99.62% 99.87% 99.49% 0.00% 0.81
Google (R2V) 83.45% 81.93% 70.41% 18.78% 19.16

Live (Strabo) 99.47% 98.31% 97.79% 0.00% 8.08

Live (R2V) 83.42% 71.36% 62.69% 29.25% 23.85

OSM (Strabo) 99.81% 100.00% 99.81% 0.00% 0.76

OSM (R2V) 90.47% 93.71% 85.79% 6.82% 10.84

MapQuest (Strabo) 99.85% 100.00% 100.00% 0.00% 0.73

MapQuest (R2V) 92.01% 93.41% 87.149% 7.52% 6.72

Yahoo (Strabo) 99.97% 99.97% 99.94% 0.00% 0.69
Yahoo (R2V) 86.10% 77.17% 68.62% 103.29% 26.49

Avg. (Strabo) 95.07% 96.70% 92.15% 0.28% 3.05

Avg. (R2V) 90.66% 82.10% 75.64% 39.98% 13.22

Table 3 Numeric results of the extracted road vector data (3-pixel-wide buffer) using Strabo and R2V

Figures 29 to 35 show some example results. Note

that the geometry of the extracted road vector data is

very close to the road centerlines for both straight and

curved roads, especially the computer-generated maps

from the web-mapping service providers.

For the lower than average completeness numbers

in the ITM, GECKO, GIZI, and UNAfg maps, some

broken lines were not reconnected since the gaps were

larger than the iterations of the dilation operator af-

ter the non-road overlapping features were removed,

such as the gaps in the UNAfg, GECKO, and GIZI

maps shown in Figures 29, 30, and 31. The broken lines

could be reconnected with post-processing on the road

vector data since the gaps are now smaller than they

were in the extracted road layers resulting from the

dilation operator. One post-processing example could

be connecting extreme points that are within the dis-

tance of a user-specified threshold in the road vector

data. This post-processing step could potentially in-

crease the completeness of the road vector data results.

For the lower than average completeness numbers in the

scanned UNIraq map, some of the road lines as shown

in Figure 32 are dashed lines and the ground truth were

drawn as solid lines.

For the text labels in the test maps, except the RM

maps, the maps contained text labels drawn in a differ-

ent color than the roads so that the text pixels were re-

moved during the extraction of road layers (i.e., Strabo

identified the colors that represent roads and used the

road color to extract the road layers). The overlapping

text was also removed and hence the extracted road

layers were broken as shown in the examples of the

ITM, UNAfg, Gecko, and GIZI maps in Figure 29 to

Figure 31.

For the RM maps, Figure 33(b) shows the extracted

road pixels using the supervised function of Strabo.

Many characters were extracted since they share the

same color as the black lines. Although we removed
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(a) ITM map (portion) (b) Extracted road pixels

(c) Strabo results (d) R2V results

Fig. 27 Example results using Strabo and R2V of a cropped

area from the ITM map

Fig. 28 R2V results with manual image editing (red lines are
the extracted road vector data and black pixels are the edited

road area

the majority of the characters automatically using the

text/graphics separation and connected component anal-

ysis techniques [Cao and Tan, 2002; Chiang et al., 2008]

as described in Section 3.3, some of the characters were

miss-identified as road lines since they touch the road

lines and the connected-component analysis approach

we used could not remove this type of false positive,

which resulted in lower completeness, correctness, and

quality. For the Google, Live, OSM, MapQuest, and Ya-

hoo maps, because of the good image quality, Strabo

automatically separated the foreground pixels from the

background and the foreground pixels contain both the

text and road pixels as the example shown in Figure 35.

Since the text labels in these maps were placed on top

of the road lines, the extracted road layers show accu-

rately connected road lines.

The ITM, GECKO, GIZI, UNIraq, and RM maps

had lower than average correctness numbers since some

of the non-road features were also extracted using the

identified road colors and those parts contributed to

false positive road vector data. Figure 29(b) shows a

portion of the ITM map where the runways are rep-

resented using the same color as the white roads and

hence were extracted as road pixels. Figure 32 shows a

portion of the UNIraq map where some of the building

pixels were extracted since they share the same colors

as the road shadows. Figure 33 shows two grid lines in

pink on the left and right portions of the RM map were

also extracted since they have the same color as the

major road shown at the center of the map. Including a

user validation step after the road pixels were extracted

could further reduce this type of false positive resulting

in higher correctness numbers.

Strabo’s redundancy numbers are generally low since

we correctly identify the centerlines for extracting the

road vector data. The average RMS differences are un-

der 3 pixels, which shows that the thinning operator

and our approach to correct the distortion result in

good quality road geometry. For example, in the re-

sults shown in Figure 34 and Figure 35, although the

extracted road lines are thick, Strabo extracted accu-

rate road vector data around the intersections. The high

redundancy numbers of R2V resulted from no manual

pre-processing before R2V’s automatic function to ex-

tract the centerlines of the roads, and the automatic

function is sensitive to wide road lines.

6.3.1 Computation Time

We built Strabo using Microsoft Visual Studio 2008

running on a Microsoft Windows 2003 Server powered

by a 3.2 GHz Intel Pentium 4 CPU with 4GB RAM.

The average processing time for the entire process of

vectorizing the road pixels for a 800x550-pixel map was

5 seconds, for a 2084x2756-pixel map was 2 minutes,

and for a 4000x3636-pixel map was 3.5 minutes. The

dominant factors of the computation time are the image

size, the number of road pixels in the raster map, and

the number of road intersections in the road layer. The

implementation was not fully optimized and improve-

ments could still be made to speed up the processes,

such as multi-threading on processing map tiles of an

input map.
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(a) ITM map (portion) (b) Road pixels of (a)

(c) Road vector data of (a)

pgflastimage

(d) UNAfg map (portion)

(e) Road pixels of (d) (f) Road vector data of (d)

Fig. 29 Examples of the road vectorization results on the ITM
and UNAfg maps

7 Conclusion and Future Work

We present a general approach to extract accurate road

vector data from heterogeneous raster maps with mini-

mal user input. This approach handles raster maps with

poor image quality using a semi-automatic technique.

We show that our approach extracts accurate road vec-

tor data from 40 raster maps from 11 sources with

varying color usages and image quality. In the future,

we plan to extend our approach to include automatic

post-processing on the road vector data. For example,

without knowing the real-world lengths of the extracted

road lines, we cannot apply heuristics for post-processing

on the extracted road vector data, such as removing

road lines that are shorter than 1 meter. With the ex-

tracted road vector data, we plan to utilize map confla-

tion techniques, such as the one from Chen et al. [2008],

to identify the geocoordinates of the road vector data

and then discover the actual lengths of the extracted

road lines. We can then utilize real-world heuristics,

such as thresholds on the road length and road turn-

(a) GECKO map (portion) (b) Road pixels of (a)

(c) Road vector data of (a) (d) GECKO map (portion)

(e) Road pixels of (d) (f) Road vector data of (d)

Fig. 30 Examples of the road vectorization results on the

GECKO map

ing angles, to apply automatic post-processing on the

extracted road vector data to improve the results.
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