
Noname manuscript No.
(will be inserted by the editor)

Recognizing Text in Raster Maps

Yao-Yi Chiang · Craig A. Knoblock

Received: date / Accepted: date

Abstract Text labels in maps provide valuable geographic information by
associating place names with locations. This information from historical maps
is especially important since historical maps are very often the only source of
past information about the earth. Recognizing the text labels is challenging
because heterogeneous raster maps have varying image quality and complex
map contents. In addition, the labels within a map do not follow a fixed ori-
entation and can have various font types and sizes. Previous approaches typ-
ically handle a specific type of map or require intensive manual work. This
paper presents a general approach that requires a small amount of user ef-
fort to semi-automatically recognize text labels in heterogeneous raster maps.
Our approach exploits a few examples of text areas to extract text pixels
and employs cartographic labeling principles to locate individual text labels.
Each text label is then rotated automatically to horizontal and processed by
conventional OCR software for character recognition. We compared our ap-
proach to a state-of-art commercial OCR product using 15 raster maps from
10 sources. Our evaluation shows that our approach enabled the commercial
OCR product to handle raster maps and together produced significant higher
text recognition accuracy than using the commercial OCR alone.

Keywords GIS · OCR · raster maps · text recognition · map processing

Y.-Y. Chiang
University of Southern California
Spatial Sciences Institute
3616 Trousdale Parkway, AHF B55, Los Angeles, CA 90089, USA
E-mail: yaoyic@usc.edu

C. A. Knoblock
University of Southern California
Department of Computer Science, Information Sciences Institute, and Spatial Sciences In-
stitute
4676 Admiralty Way, Marina del Rey, CA 90292, USA
E-mail: knoblock@isi.edu

2 Yao-Yi Chiang, Craig A. Knoblock

1 Introduction

Text labels in raster maps link place names to geographic locations. Convert-
ing the text labels in a raster map to machine-editable text helps produce
geospatial knowledge for understanding a map region. For example, the rec-
ognized text labels from historical maps can be used to generate gazetteers
that contain geospatial information in the past; such information is not easily
accessible from other sources and is valuable to many applications and re-
search fields, such as social science research. Further, with the techniques to
extract road information from raster maps [Chiang and Knoblock, 2011], we
have shown that the recognized text can be used to create a set of named road
vector data [Chiang and Knoblock, 2012] that can be used in a Geographic
Information System (GIS). Finally, if a raster map is registered with other
geospatial data, the recognized map text can be used for labeling and retrieval
of the other geospatial data. For example, after a map is aligned with imagery
using the unique road-intersection patterns [Chen et al., 2008; Chiang et al.,
2009], we can search for specific objects/regions in the imagery using map
labels, such as names of schools, lakes, and roads.

In classic text recognition systems, including most commercial optical char-
acter recognition (OCR) products, the first step is “zoning,” which analyzes
the layout of an input image for locating and ordering individual text blocks
containing homogeneous text lines of the same orientation(i.e., zones) [Kanai
et al., 1995; Mao et al., 2003; Mori et al., 1995]. Next, each of the identified text
blocks is processed for text recognition. However, this zoning approach cannot
handle documents that do not have homogeneous text lines, such as artistic
documents, pictorial images with text, engineering drawings, and maps [Nagy
et al., 2000]. For example, Figure 1 shows an example map with multi-oriented
text lines of multi-sized characters where text blocks with homogeneous text
lines do not exist.

Fig. 1 Multi-oriented and multi-sized characters in a scanned Baghdad map by Gecko Maps

In the fields of image processing, pattern recognition, and graphics recog-
nition, where OCR techniques are actively studied, maps are generally han-

Recognizing Text in Raster Maps 3

dled as a special type of input images and hence are very often ignored; or
the techniques developed for maps are ad-hoc and focus on specific types of
maps (see the related work section for details). For example, to recognize
the non-homogeneous text (i.e., multi-oriented, multi-sized, and curved text),
one line of research works on specific cases of non-homogeneous text, such as
straight text lines [Fletcher and Kasturi, 1988; Pouderoux et al., 2007] and
multi-oriented but similar-sized characters [Fletcher and Kasturi, 1988; Goto
and Aso, 1998]. However, these specific cases represent only a small fraction
of the text labels in common maps. A more general approach is to recog-
nize individual characters separately [Adam et al., 2000; Deseilligny et al.,
1995], such as utilizing rotation invariant features of specific character sets for
character recognition [Deseilligny et al., 1995]. Nevertheless, this approach re-
quires specific training work and cannot be easily integrated with the classic,
well-developed OCR techniques, which process homogeneous text. Moreover,
recognizing individual characters separately fails to take advantage of carto-
graphic labeling principles and word context, such as utilizing a dictionary to
help recognize grouped characters that represent meaningful words.

In this paper we present an end-to-end approach that reduces the amount of
manual input to recognize text labels from full-size raster maps. Our techniques
do not assume a particular series of maps or map source, which is achieved by
incorporating cartographic labeling principles, such as that character spacing
is generally smaller than string spacing [Edmondson et al., 1996] to generate
inputs that can be used in a standard commercial OCR system. Figure 2 shows
the two major steps of our approach: (1) Text Layer Extraction and (2)
Text Label Recognition. The Text Layer Extraction step is a supervised
technique that analyzes example text areas to identify colors that represent
text in a raster map for separating individual text layers (i.e., a set of text
pixels of the same color) from the map. The supervised technique does not
require intensive user effort for handling a variety of raster maps, including
scanned maps.

The Text Label Recognition step builds on the map processing work
in our earlier papers that solved specific sub-problems for text recognition
from maps (the detection of text orientations [Chiang and Knoblock, 2010]
and recognition of non-homogenous text [Chiang and Knoblock, 2011]). This
step handles multi-oriented, multi-sized, and curved text, requires no train-
ing for specific fonts, and can be easily integrated with a commercial OCR
product for processing documents that contain non-homogeneous text. The
Text Label Recognition step described in this paper offers a number of ad-
ditional contributions beyond the integration of our previous text recognition
techniques. First, we present the complete algorithms for the detection of text
orientations [Chiang and Knoblock, 2010] and recognition of non-homogenous
text [Chiang and Knoblock, 2011] (Sections 4). Second, we present a new
technique for processing full-size raster maps (Section 4.1.4). Last, we inte-
grate the Text Layer Extraction and Text Label Recognition steps to
build a complete system for label recognition in maps.

4 Yao-Yi Chiang, Craig A. Knoblock

Step	 2.	 Text	 Label	 Recogni4on	 (Sec4on	 4)	 	 	

Step	 1.	 Text	 Layer	 Extrac4on	 (Sec4on	 3)	

Quan%zed	 Map	

Automa4cally	 loca4ng	 text	 strings	 	
(Sec4on	 4.1:	 Condi4onal	 Dila4on	 Algorithm)	

Raster	 Maps	

Automa4cally	 detec4ng	 string	 orienta4ons	 	
(Sec4on	 4.2:	 Single-‐String	 Orienta4on	 Detec4on	 Algorithm)	

Text	 Strings	

Color	 Quan4za4on	 (Sec4on	 3.1)	

Text	 Layer	 (raster	 image)	

Op4cal	 Character	 Recogni4on	 (Sec4on	 4.3)	

Recognized	 Text	

User	 Labeling	
(Sec4on	 3.2)	

User	 Labels	

Automa4cally	 Iden4fying	 Text	 Colors	
Using	 Text	 Examples	 (Sec4on	 3.3)	

Rotated	 Horizontal	 Strings	

Fig. 2 The overall approach to recognizing text in raster maps

The remainder of this paper is organized as follows. Section 2 discusses
related work. Section 3 describes the Text Layer Extraction step. Section 4
explains the Text Label Recognition step. Section 5 reports on our exper-
imental results, and Section 6 presents the conclusion and future work.

2 Related Work

Text recognition from documents that contain non-homogeneous text, such as
from raster maps [Nagy et al., 1997], is a difficult task, and hence much of the
previous research only works on specific cases.

Fletcher and Kasturi [1988] utilize the Hough transform to group characters
and identify text strings. Since the Hough transform detects straight lines, their

Recognizing Text in Raster Maps 5

method cannot apply to curved strings. Moreover, their work does not handle
multi-sized characters. Chen and Wang [1997] utilize the Hough transform and
a set of font and size independent features to recognize the numeric strings
in raster maps. Their approach handles multi-sized numeric characters but
cannot work on alphabetic characters.

Velázquez and Levachkine [2004] and Pal et al. [2003] present text recog-
nition techniques based on detecting straight-string baselines for identifying
individual text strings. Their techniques handle characters in various font sizes,
font types, and orientations, but cannot work on curved strings.

Goto and Aso [1998] present a text recognition technique to handle multi-
oriented and curved text strings. They first divide the input document into
columns of equal sizes. Then the columns are divided into blocks based on the
sizes of the connected components within each column to compute the local
linearity of connected components and extract text strings. This approach
works on touching characters, but requires characters of similar sizes.

In contrast to the previous research that works on specific cases [Chen
and Wang, 1997; Fletcher and Kasturi, 1988; Goto and Aso, 1998; Pal et al.,
2003; Velázquez and Levachkine, 2004], our approach processes heterogeneous
raster maps using an interactive, training-by-example step (the Text Layer
Extraction step) and handles multi-oriented, multi-sized, and curved text
which commonly exists in raster maps (the Text Label Recognition step).

Li et al. [2000] and Cao and Tan [2002] developed text recognition tech-
niques that work on binary maps (i.e., bi-level map images) by assuming
the map background can be easily removed manually. These text recogni-
tion techniques that work on binary maps cannot process scanned maps easily
since scanned maps usually suffer from compression and scanning noise, which
means that generating the input binary map requires tedious manual work. In
comparison, our technique handles a variety of raster maps and requires only
a few user interaction steps (the Text Layer Extraction step).

Pouderoux et al. [2007] present a text recognition technique for raster maps.
They first identify text strings in a map by analyzing the geometric properties
of individual connected components in the map and then rotate the identified
strings horizontally for OCR.

Roy et al. [2008] detect text lines from multi-oriented, straight or curved
strings. Their algorithm handles curved strings by applying a fixed threshold
on the connecting angle between the centers of three nearby characters. This
orientation detection method only allows a string to be classified into one of
the four directions.

In the work of Pouderoux et al. [2007] and Roy et al. [2008], their meth-
ods are based on the assumption that the string curvature can be accurately
estimated from the line segments connecting each character center in a string.
However, this assumption does not hold when the string characters have very
different sizes in height or width. In contrast, we present a robust technique
to estimate the curvature and orientation of a text string and our technique
is independent from the character size (the Text Label Recognition step).

6 Yao-Yi Chiang, Craig A. Knoblock

Deseilligny et al. [1995] and Adam et al. [2000] develop specific character
recognition techniques for recognizing multi-oriented text strings. Deseilligny
et al. [1995] use rotation-invariant features and Adam et al. [2000] use image
features based on the Fourier-Mellin Transformation to compare the target
characters with the trained character samples for text recognition. This type
of technique requires intensive user effort for generating training data, such as
providing sample characters for maps using different fonts to generate distinct
feature sets for the classification. In comparison, our technique leverages the
recognition task of a commercial OCR product and requires no user training
for specific fonts (the Text Label Recognition step).

Other techniques introduce additional information for identifying text la-
bels in the raster map. Gelbukh et al. [2004] extend the algorithm from
Velázquez and Levachkine [2004] by exploiting additional information from
toponym databases and linguistic dictionaries. Myers et al. [1996] generate hy-
potheses of the possible location and characters of text labels using a gazetteer.
Our approach does not rely on the auxiliary information (e.g., a gazetteer),
which is not available for many regions, especially for historical maps.

3 Text Layer Extraction

The Text Layer Extraction step is a supervised approach for extracting
text layers from heterogeneous raster maps with varying image quality. This
supervised approach first generates a quantized map where the text labels are
represented by only a few colors. Next, a user provides examples of text labels
in the quantized image. Finally, with the text examples, a set of text colors is
automatically identified to extract individual text layers from the raster map.

3.1 Color Quantization

Raster maps usually contain numerous colors due to the scanning or com-
pression processes. To extract individual text layers, our supervised approach
incorporates color segmentation techniques from our previous work [Chiang
and Knoblock, 2013] to reduce the number of colors in the maps for generat-
ing a color palette with a limited number of colors (also see [Leyk and Boesch,
2010] for a color segmentation technique that handles historical maps). Fig-
ure 3 shows an example scanned map, and Figure 3(b) shows the quantized
map with 16 unique colors after color segmentation.

3.2 User Labeling

Once the quantized map is generated, a user labels the quantized map to pro-
vide a text example for each text color in the quantized map. A text example is
a rectangle that must be large enough to cover a string of at least two charac-
ters, and the text example does not have to cover only text pixels in the map.

Recognizing Text in Raster Maps 7

(a) An example map area with 80,421 unique colors

(b) The quantized map with 16 unique colors after color
segmentation

Fig. 3 An example map tile and the color quantization results with their red, green, and
blue (RGB) color cubes

The user can also provide non-text examples to help the supervised technique
identify the text colors. A non-text example is a rectangle that covers only
non-text colors in the raster map.

The user-labeling interface works as follows: the user first clicks on the
map and then selects the size of the example area. The user can rotate the
selection area to label non-horizontal text if needed. Figure 4 shows the user
interface and a text example. The text example is automatically rotated to
the horizontal direction if the user selects a non-horizontal text string.

Fig. 4 The user labeling interface, and the selected text example

8 Yao-Yi Chiang, Craig A. Knoblock

3.3 Automatically Identifying Text Colors Using Text Examples

In each text example, there exist one or more colors that represent text in the
raster map (i.e., the text colors). To identify the text colors in a text example,
we exploit the fact that the character pixels in the text example are spatially
near each other and constitute a horizontal string, namely the horizontal-string
property.

We first decompose a text example into a set of images so that every de-
composed image contains only one color from the text example. For example,
for the text example shown in Figure 5(a), the first row of Figure 5 shows
the four decomposed images (background is shown in black). With the de-
composed images, we use the morphological operator implementation of the
run-length smoothing algorithm (RLSA) to determine the decomposed images
that contain text pixels. The RLSA is the combination of the closing operator
followed by the erosion operator and is commonly used in document analy-
sis techniques to identify string blocks from character pixels [Najman, 2004;
Wong and Wahl, 1982].

(a) A text example

(b) The decomposed images and the RLSA results

Fig. 5 Identifying the text colors

The closing operator is the dilation operator followed by the erosion opera-
tor. For a background pixel in a decomposed image, if there exists a foreground
pixel in the horizontal direction within the distance of H, the dilation opera-
tor converts the background pixel to the foreground. Then for each foreground
pixel (including the ones converted by the dilation operator), if there exists
a background pixel in the horizontal direction within the distance of H, the
erosion operator converts the foreground pixels to the background. Since the
character pixels are horizontally near each other in the text sting, we exploit
the number of the remaining foreground pixels after the RLSA as a measure

Recognizing Text in Raster Maps 9

to determine if the foreground pixels in a decomposed image represent text in
the raster map.

Because the height of a text example, H, is larger than the height of any
character in the text example, and the character height is usually larger than
the character width, the horizontal pixel distance between two character pixels
in a decomposed image should be less than H. Therefore, we employ the closing
operator with structure elements of height equal to one pixel and width equal
to H to expand the foreground area for connecting character pixels and to
grow a string blob. The first row in Figure 5(b) shows the decomposed images
(background is shown in white) of Figure 5(a). The second and third rows in
Figure 5(b) show the results after applying the dilation and erosion operators
to the decomposed images. After the closing operator, we use the erosion
operator again with a structure element of height equal to one pixel and width
equal to H again to further eliminate false-positive branches of the string blob.
The fourth row in Figure 5(b) shows the results after applying the erosion
operator (background is shown in white). In the example in Figure 5, Image 1
in Figure 5(b) has the most remaining foreground pixels after the RLSA, so
the color of the foreground pixels in Image 1 is identified as the text color.

There are two exceptions to using the horizontal-string property to identify
text colors in a text example. One exception is that when background with
a uniform color exists in a text example, the color of the foreground pixels
in the decomposed image that represents the background can be misidentified
as the text color. This is because the pixels of the decomposed image that
represents the background are horizontally near each other. A second exception
is when the characters in a text example are represented by multiple colors (i.e.,
pixelated, non-solid characters) and hence each of the text colors represents
only a small portion of the foreground pixels. In both cases, the user would
need to provide examples that contain non-text colors. If one or more non-text
examples exist, we apply the RLSA only to the decomposed images that do
not contain the colors in any of the non-text examples.

We process every text and non-text example to identify a set of text col-
ors from each text example and use the identified text colors to extract text
layers from the quantized map. For example, the left image in Figure 6(a)
shows a text example, “Antiqui”, and the left image in Figure 6(c) shows the
extracted black text layer using the identified text color from Figure 6(a). The
right image in Figure 6(a) shows a text example, “ALHI”, but the uniform
background in this text example can be misidentified as the text color. In this
case, the user provides the non-text example in Figure 6(b) together with the
text example of “ALHI” to extract the text layer of blue characters as the left
image shown in Figure 6(d).

In the examples of Figures 6(c) and 6(d), there are still non-text objects
in the extracted text layer. This is because the non-text objects have the
same color as the text. To remove these non-text objects, we use a connected
component analysis approach based on the character sizes in the text examples.
We compute the average size of the characters in the text examples and then
filter out the connected components in the extracted text layer that are smaller

10 Yao-Yi Chiang, Craig A. Knoblock

(a) The text example for black and blue characters

(b) The non-text example

(c) The extracted black text layer before and after post-processing

(d) The extracted blue text layer before and after post-processing

Fig. 6 Examples of the Text Layer Extraction step

than half or larger than twice the average size (this filtering rule is determined
empirically).

For a connected component, A, and its bounding box, Abx, the size of A is
given by:

Size = Max(Abx.Height, Abx.Width) (1)

Figures 6(c) and 6(d) show the results after this filtering step. The characters
that overlap a large connected component could also be removed, such as
the ‘S’ shown in Figure 6(d). Since most overlapping features in a map have
different colors, this case is not common. Text separation algorithms [Cao
and Tan, 2002] can be used to remove the overlapping lines and recover the
overlapping characters but the recovered characters might be damaged and
difficult for OCR.

Recognizing Text in Raster Maps 11

4 Text Label Recognition

The Text Label Recognition step is an automatic technique for recognizing
text labels in the separated text layers from the Text Layer Extraction step.
The text layers can contain multi-oriented text strings of various character
sizes and curvatures. This automatic technique includes three components: (i)
The conditional dilation algorithm (CDA), (ii) The single-string orientation
detection algorithm (SSOD), and (iii) Optical character recognition (OCR).

The CDA divides a text layer into overlapping tiles, locates individual text
strings in each tile, and merges the identified text strings. This divide-and-
conquer approach enables the CDA to process large, full-sized maps. Once
individual strings are located, the SSOD detects the string orientations. Fi-
nally, the strings are rotated to the horizontal direction for a conventional
OCR product to recognize their characters.

4.1 Conditional Dilation Algorithm (CDA)

After the Text Layer Separation step, we have a binary image where each
connected component (CC) in the foreground is a single character or a part of
a character, such as the top dot of the ‘i’. To group the CCs into strings, we
present the conditional dilation algorithm (CDA). Figure 7 shows the pseudo-
code of the CDA.

The CDA performs multiple iterations to expand and connect the CCs
and then uses the connectivity of the expanded CCs to identify individual
text strings. As shown in the ConditionalDilation function in Figure 7, before
the first CDA iteration, the CDA sets every CC as expandable. Next, in an
iteration, the CDA performs two scans on the input image (the first scan
and second scan in the TestConditions sub-function). In the first scan, the
CDA tests a set of expansion conditions on every background pixel and the
background pixel’s foreground neighbors to determine if a background pixel is
an expansion candidate. An expansion candidate is a background pixel that can
convert to the foreground for expanding a CC given the expansion conditions.
Once the CDA identifies the expansion candidates, in the second scan, the
CDA evaluates each expansion candidate to identify the pixels to convert to the
foreground. If an expansion candidate and the candidate’s foreground neighbors
and expansion-candidate neighbors do not violate the expansion conditions, the
CDA converts the expansion candidate to the foreground. After an iteration,
the CDA evaluates each expanded CC (the CountExpandableCC sub-function)
to determine whether the CC can be further expanded in the next iteration
and stops when there is no expandable CC.

4.1.1 The First Scan

In the first scan, the CDA checks every background pixel in the input image.
If a background pixel meets all of the following expansion conditions, the CDA

12 Yao-Yi Chiang, Craig A. Knoblock

 // The number of processed iterations of the conditional dilation algorithm

 IterationCounter = 0;
// The number of expandable connected components
 Expandable_CC_Counter;

MainFunction
void ConditionalDilation (int[,] image, double max_size_ratio, double max_curvature_ratio,
double max_distance_ratio)
 FOR EACH connected component CC in image
 CC.expandable = TRUE;
 DO{ TestConditions(image, max_size_ratio, max_curvature_ratio);
 CountExpandableCC(image, max_distance_ratio);
 IterationCounter = IterationCounter +1;
 } WHILE(Expandiable_CC_Counter > 0)
EndMainFunction

SubFunction
void TestConditions (int[,] image, double max_size_ratio, double max_curvature_ratio)
// first scan
 FOR EACH background pixel BG in image
 IF(PassConnectivityTest(BG) && PassSizeTest(BG, max_size_ratio)
 && PassExpandabilityTest(BG)
 && PassStringCurvatureTest(BG, max_curvature_ratio))
 Set BG to ExpansionCandidate;
// second scan
 FOR EACH expansion candidate EC in image
 IF(PassConnectivityTest(EC) && PassSizeTest(EC, max_size_ratio)
 && PassExpandabilityTest(EC)
 && PassStringCurvatureTest(EC, max_curvature_ratio))
 Set EC to Foreground;
EndSubFunction

SubFunction
void CountExpandableCC (int[,] image, double max_distance_ratio)
 Expandable_CC_Counter = 0;
 FOR EACH connected component CC in image
 IF(HasConnectedToTwoCCs(CC) ||
 IterationCounter > max_distance_ratio* CC.size)
 CC.expandable = FALSE;
 ELSE
 Expandable_CC_Counter = Expandable_CC_Counter +1;
EndSubFunction

Fig. 7 The pseudo-code for the conditional dilation algorithm (CDA)

Recognizing Text in Raster Maps 13

sets the background pixel as an expansion candidate. These conditions do not
have to be checked in a fixed order.

Character Connectivity Condition An expansion candidate needs to
connect to at least one and at most two characters. This is because the max-
imum neighboring characters that any character in a text string can have is
two.

Character Size Condition If an expansion candidate connects to two
characters, the sizes of the two characters must be similar. For a character, A,
and its bounding box, Abx, the size of A is defined as:

Size = Max(Abx.Height, Abx.Width) (2)

For the characters connected by expansion candidates, the size ratio between
the characters must be smaller than a predefined parameter (the max size ratio
parameter). For two characters, A and B, their bounding boxes are Abx and
Bbx, their size ratio is defined as:

SizeRatio =
Max(Size(A), Size(B))

Min(Size(A), Size(B))
(3)

This character size condition guarantees that every character in an identified
text string has a similar size. We use the size ratio equal to two because some
letters, such as the English letter ‘l’ and ‘e’, do not necessarily have the exact
same size, even when the same font is used.

Character Expandability Condition An expansion candidate needs
to connect to at least one expandable CC and the expandability of a CC is
determined as follows: before the first CDA iteration, every CC is expandable.
After each iteration, the CDA checks the connectivity of each expanded CC
and if the expanded CC has already connected to two other CCs, the CC is
not expandable.

Next, for the remaining expanded CCs (i.e., the ones with connectivity less
than two), the CDA determines the expandability of each CC by comparing
the number of iterations that have been done and the original size of each CC
before any expansion. This is to control the longest distance between any two
characters that the CDA can connect so that the characters in two separated
strings will not be connected. For example, in our experiments, we empirically
set the longest distance between two characters to 1/5 of the character size
(the max distance ratio parameter). As a result, for a character of size equal
to 20 pixels, the character will not be expandable after four iterations, which
means this character can only find a connecting neighbor within the distance
of 4 pixels plus 1/5 of the size of a neighboring CC.

String Curvature Condition If an expansion candidate connects two
CCs and at least one of the two CCs has a connected neighbor (i.e., together as
a string with at least three characters), the curvature of the set of CCs should
be less than the maximum desired curvature. This condition allows the CDA
to identify curved strings and guarantees that the characters of the text strings
in different orientations will not be connected. However, determining the string

14 Yao-Yi Chiang, Craig A. Knoblock

curvature without knowing how the characters are aligned is unreliable. For
example, considering the text string “Wellington”, if we link the mass centers
or bounding-box centers of each character to represent the string curvature, the
line segments linking any two neighboring characters can have very different
orientations since the characters have various heights, such as the links between
“We” and the one between “el”.

To accurately estimate the curvature of a string, the CDA first establishes
a curvature baseline for the string. For example, the left image in Figure 8(a)
shows an example string, and the right image shows the rearranged string as
if the example string is straight and in the horizontal direction. The CDA
generates the rearranged string by first aligning each of the characters verti-
cally and rearranging the characters’ positions in the horizontal direction so
that the characters are not overlapped. The dashed line in the right image
shows the curvature baseline of “dale”. This curvature baseline contains two
connecting angles: one between “dal” and one between “ale”.

With the curvature baseline, the CDA determines the string curvature
by comparing the connecting angles in the original string to the ones in the
curvature baseline. For example, Figure 8(c) shows that θ1 is similar to θ1’ and
θ2 is similar to θ2’ and hence the CDA considers the string “dale” as a straight
string (i.e., every original connecting angle is similar to its corresponding one).
Figure 8(d) shows an example where θ1 is very different from θ1’ and hence
the CDA considers the string “AvRi” as a curved string.

The CDA uses a curvature parameter to control the maximum desired cur-
vature of a text string (the max curvature ratio parameter). If the difference
between one connecting angle of a string and the corresponding angle in the
string’s curvature baseline is larger than the curvature parameter, the string
violates the string curvature condition. For example, with the curvature pa-
rameter set to 30% from the curvature baseline, any string with curvature
within 138◦ (180◦ divided by 130%), to 234◦ (180◦ multiplied by 130%) will
be preserved.

4.1.2 The Second Scan

The second scan checks each expansion candidate using the same conditions in
the first scan. During the first scan, the CDA does not have the knowledge of
the locations of every expansion candidate before the first scan ends. Therefore,
two connecting expansion candidates could violate the expansion rules. For
example, Figure 9(a) shows two characters, ‘H’ and ‘i’, that should not be
connected because of the size limitation. Figure 9(b) shows the results after
the first scan, where the green pixels are the identified expansion candidates.
After the first scan, the CDA marks all background pixels that directly connect
to the two characters as expansion candidates. If the distance between the
two characters is two pixels, such as the areas in the red rectangle shown
in Figure 9(a), after the first scan, the CDA fills up the two-pixel area with
expansion candidates and the two characters are then connected. Therefore,

Recognizing Text in Raster Maps 15

(a) The original string (left) and curvature baseline (right)
of “dale”

(b) The original string (left) and curvature baseline (right) of
“AvRi”

(c) θ1/θ2 is similar to θ1’/θ2’ (d) θ1 is very different from θ1’

Fig. 8 Testing the string curvature condition

(a) An example map (b) After the first scan (c) After the second scan

Fig. 9 Using the second scan to determine actual pixel for expansion (expansion candidates
are shown in green and background is shown in white)

we need the second scan to verify the expansion candidates. Figure 9(c) shows
the results after the second scan.

4.1.3 The CDA Output

After the CDA stops when there are no expansion candidates, each connected
component of the expansion results is an identified text string. For example, in
Figure 10, the set of color blobs are the expansion results (each color represents
a connected component), and the black pixels overlapped with a color blob
belong to an identified string. In Figure 10, the CDA does not group small

16 Yao-Yi Chiang, Craig A. Knoblock

(a) An example layer (b) The CDA result

Fig. 10 The CDA output

CCs correctly, such as the dot on top of the character ‘i’ . This is because
these small CCs violate the character size condition. The OCR system will
recover these missing small parts in the character recognition step, which is
more robust than adopting special rules for handling small CCs in the CDA.

4.1.4 The CDA’s Divide-and-Conquer Approach

Because scanned maps are usually large images (a typical 350 dot-per-inch
(DPI) scanned map can be larger than 6000x6000 pixels), loading the entire
map into memory for the CDA to process is very often impractical and some-
times impossible. Therefore, the CDA divides a raster map into overlapping
tiles and processes each tile to identify individual text labels. Figure 11(a)
shows an example text layer with two overlapping tiles. After the CDA pro-
cesses all the tiles, the algorithm merges the identified text strings from each
tile as one set of text strings for the entire raster map.

Before processing each tile, the CDA first removes the connected compo-
nents that touch each tile’s borders since the touching connected components
might only be a portion of a character. The overlapping area should be larger
than any of the characters in the text layer so that the characters near the tile
borders always exist in one of the tiles. For example, Figures 11(b) and 11(c)
shows the text identification results of the two overlapping tiles using the CDA.
In the left tile, the character ‘a’ of the text string “Hillsdale” in the text layer
is on the tile border and hence the CDA removes the ‘a’ before applying the
conditional dilation algorithm. For the identified strings in two neighboring
tiles, the CDA merges the strings that contain one or more characters that
are the same. For example, Figures 11(b) and 11(c) show that the conditional
dilation algorithm identifies the text string “Hillsd” from the left tile and the
text string “sdale” from the right tile. Since the two characters “sd” in the
original text layer exist in both text strings, the CDA merges the two strings
into one as “Hillsdale”.

4.2 Single-String Orientation Detection Algorithm (SSOD)

Skew correction is well developed in modern OCR techniques to detect the
orientation of document images; however, classic skew correction can only

Recognizing Text in Raster Maps 17

(a) An example text layer

(b) The left tile (c) The right tile

Fig. 11 The divide-and-conquer processing

apply to multi-line and multi-word documents since the line spacing and the
word spacing is exploited to detect the tilt angle, such as the morphological-
operator-based RLSA method [Najman, 2004].

To detect the orientation of a single string, we present a single-string ori-
entation detection algorithm (SSOD) based on the morphological-operator-
based RLSA [Chiang and Knoblock, 2010]. The SSOD employs morphological
operators (i.e., the closing and erosion operators) with dynamically generated
structure elements. Figure 12 shows the pseudo-code of the SSOD.

Given a string, the SSOD first rotates the string image from 0 degrees to
179 degrees. Then the SSOD uses the closing operator with a structure-element
wider than the character spacing to merge nearby characters in the horizon-
tal direction. Since the character size is generally larger than the character
spacing, we use the average size of the connected components in the string
as the width of the structure element of the closing operator. This average
size is called AvgSize in the pseudo-code. For each rotated string, the SSOD
applies the closing operator using a structure element of height equal to one
and width equal to AvgSize to grow the string blobs, as the examples shown
in the middle row in Figure 13.

After the closing operator, if a string is in the horizontal direction, there
exist character pixels that have no neighboring background pixels along the
horizontal direction within a distance similar to the string length. The SSOD
utilizes the erosion operator to identify these character pixels by erasing the
character pixels that have one or more neighboring background pixels along
the horizontal direction within a distance threshold. This distance threshold is

18 Yao-Yi Chiang, Craig A. Knoblock

Function double FindAvgCCSize(Image string_image)
 double AvgSize;
 For each connected component CC in string_image {
 AvgSize = AvgSize + CC.Size;
 }
 return AvgSize/string_image .TotalNumberOfCCs;

Function int FindMaxStringWidth()
 StringWidthList;
 For each rotated image RI in RotatedImageList {
 Pixel left =
 FindTheLeftMostForegroundPixel(RI);
 Pixel right =
 FindTheRightMostForegroundPixel(RI);
 StringWidthList.Add(right.X – left.X);
 }
 return StringWidthList.MaxValue;

Function int RLSA(AvgSize , MaxWidth)
 RemainingForgroundPixelList;
 For each rotated image RI in RotatedImageList {
 RI = Closing(RI, AvgSize, MaxWidth);
 RI = Erosion(RI, MaxWidth);
 int FGC = RI.ForegroundPixelCount;
 RemainingForgroundPixelList.Add(FGC);
 }
return RemainingForgroundPixelList.MaxValue;

// The list for storing the rotated string images
RotatedImageList;

Function int SSOD (Image string_image)
 AvgSize = FindAvgCCSize(string_image);
 For angle = MinRotation to MaxRotation {
 rotated_image = Rotate(string_image, angle);
 RotatedImageList.Add(rotated_image);
 }
 MaxWidth = FindMaxStringWidth();
 MaxForegroundPixelCount =
 RLSA(AvgSize , MaxWidth);
 For each rotated image RI in RotatedImageList {
 if(RI. ForegroundPixelCount ==
 MaxForegroundPixelCount)
 return RI.RotatedAngle;
 }

Fig. 12 The pseudo-code for the single-string orientation detection algorithm

the width of the erosion structure element and is determined using the string
length.

Since we do not know the actual length of the string, we first compute
the maximum string length using the longest horizontal length of the rotated
strings (the FindMaxStringWidth function in the pseudo-code). This longest
horizontal length is called MaxWidth in the pseudo-code. Directly using the
MaxWidth as the structure element width for the erosion operator might erase
every rotated image if the string has characters of very different sizes in height
or the string is curved (i.e., every character pixel has one or more neighbor-
ing background pixels along the horizontal direction within the MaxWidth).
Considering that a string has the longest horizontal length when the string
is placed close to the horizontal direction (the string orientation is near 0 de-
grees) and has the shortest horizontal length when the string is placed close
to the vertical direction (the string orientation is near 90 degrees), we use
the horizontal length as if the string is rotated 45 degrees as the width of
the erosion structure element to prevent over-erosion. As a result, the SSOD
uses the erosion operator with a structure element of height equal to one and
width equal to the MaxWidth multiplied by cos(45◦) to shrink the area of
the merged characters.

The bottom row in Figure 13 shows example results after applying the
erosion operator where the horizontal string has more remaining pixels than
the tilted string. The SSOD then identifies the actual horizontal string among
the rotated strings using the number of remaining pixels after applying the
erosion operator. We do not use the rotated string that has the MaxWidth
as the actual horizontal string. This is because the characters in a string can

Recognizing Text in Raster Maps 19

Fig. 13 Detecting string orientation using the morphological-operators-based RLSA

have various shapes and the rotated string that has the MaxWidth can be a
few degrees off from the horizontal direction.

The SSOD only applies on the strings having more than three connected
components. This is because the detected orientation of a short string can be
dominated by the character height using the RLSA. Since short strings in a
raster map are usually part of a longer string, we search from the centroid of a
short string for nearby strings and use the orientations of the nearby strings as
the short string’s possible orientations. For example, the most common short
strings in our test maps are “Av” as avenue and “Pl” as place, which are all
part of the road names. We dynamically generate a distance-threshold based
on the size of the bounding box of each short string to limit the search space.

4.3 Optical Character Recognition

Once the SSOD identifies the string orientations, we first rotate each string
clockwise and counterclockwise to the horizontal direction according to its
possible orientations (short strings might have more than one detected ori-
entation depending on the number of its neighboring strings) to generate a
set of rotated strings. Then we send all rotated strings to a commercial OCR
product called ABBYY FineReader 10.

The ABBYY FineReader 10 is a standard OCR product that supports
text recognition from a variety of images, including scanned documents and
photos (i.e., text with a background image), and has built-in font types and
dictionaries for 186 languages (including English). For an input image, the AB-
BYY FineReader automatically identifies areas that contain text strings and
then automatically recognizes the character of the text strings. Because of the
various sets of built-in font types, training is not required for the character
recognition process. In the ABBYY FineReader results, each recognized char-
acter is labeled as either confident or suspicious. The suspicious label means
that the ABBYY FineReader does not have enough evidence to determine that
the recognition result is correct and further manual verification is required.

For each of rotated strings, we calculate a recognition confidence and se-
lect the rotated string with the highest returned recognition confidence as the
correctly oriented horizontal string (i.e., not the upside-down one). The recog-
nition confidence is calculated using the number of connected components in

20 Yao-Yi Chiang, Craig A. Knoblock

the string, the number of recognized characters, and the number of suspi-
cious characters to calculate the recognition confidence. Formally, NRC is the
number of recognized characters, NSC is the number of suspicious recognized
characters, and NCC is the number of connected components of a text string,
the recognition confidence is given by:

RecognitionConfidence =
NRC −NSC

NCC
(4)

The NCC is generated by the CDA, and the NRC and NSC are from the AB-
BYY FineReader. Our approach does not rely on specific OCR functions/results
of the ABBYY FineReader. The NRC and NSC can be found in most standard
OCR products.

If two rotated strings have the same recognition confidence, we show both
recognition results in the final results. For short strings with fewer than three
characters, if the recognition confidence is less than 50%, we discard the re-
sults since the strings are likely to be non-text objects. For longer strings, if
the recognition confidence is less than 50%, we set the number of suspicious
characters to zero and then recalculate the recognition confidence. This is be-
cause it is very likely that the quality of the original map is poor so the OCR
software marks most of the recognized characters as suspicious.

5 Experiments

We have implemented the techniques described in this paper in our map pro-
cessing system called Strabo. To evaluate our technique, we tested Strabo
on 15 maps from 10 sources, including 3 scanned maps and 12 computer-
generated maps (directly generated from vector data).1 These maps contain
non-homogeneous text of numeric characters and the English alphabet. Ta-
ble 1 shows the information of the test maps and their abbreviations used in
this section. We manually identify the characters and words in these test maps
as the experiment ground truth.

Figure 14 shows the example areas and text of each test map. The scanned
maps show poor image quality compared to the computer-generated maps.
In addition to the image quality, as shown in Figure 14(f), the text labels in
the computer-generated maps of Google, Live, OSM, MapQuest, and Yahoo
contain pixilated non-solid characters, which is especially difficult for an OCR
system to recognize even if the text labels are in the horizontal direction.

During the Text Layer Extraction step, Strabo generated a set of quan-
tized map for these scanned maps. The user manually selected the quantized
map that had the clearest text appearance to provide examples of text and
non-text areas. The optimal number of the quantized colors should be close to
the number of representative colors used in the map (more details are in our

1 The information for obtaining the test maps can be found on: http://www.isi.edu/

integration/data/maps/prj_map_extract_data.html

Recognizing Text in Raster Maps 21

Table 1 Test maps for the experiment

Map Source (abbr.) Map Type # Char/Word
International Travel Maps (ITM) Scanned 1358/242
Gecko Maps (GECKO) Scanned 874/153
Gizi Map (GIZI) Scanned 831/165
Rand McNally (RM) Computer Generated 1154/266
UN Afghanistan (UNAfg) Computer Generated 1607/309
Google Maps (Google) Computer Generated 401/106
Live Maps (Live) Computer Generated 233/64
OpenStreetMap (OSM) Computer Generated 162/42
MapQuest Maps (MapQuest) Computer Generated 238/62
Yahoo Maps (Yahoo) Computer Generated 214/54

previous work [Chiang and Knoblock, 2013]). Strabo lets user decide the opti-
mal number based on the visual appearance of each input map. For example,
the user might choose to generate a set of quantized map with the numbers
of quantized colors ranging from 4 to 16 on maps with a few representative
colors, and could use the range from 32 to 512 on complex maps.

We utilized Strabo together with the ABBYY FineReader 10 to recog-
nize the text labels in the test maps. Strabo sent the FineReader one string
each time and each string had white background and black foreground. We
specifically designed this setting to reduce the content analysis work that the
FineReader had to perform to have an objective comparison since the details of
the core algorithms of the FineReader are not available (especially the content
analysis algorithm).

For comparison, the FineReader was also tested alone without Strabo. We
chose to test the FineReader on the original test maps without any additional
process from Strabo since the FineReader is a self-contained OCR system
that has built-in color segmentation, noise removal, and zoning capabilities
(that cannot be turned off individually) and is designed to recognize text from
complex background (e.g., text on photos).

5.1 Experimental Results

In this section, we report the recognition accuracy at the character and word
level to evaluate the overall Strabo performance. We report the number of user
interaction steps (labels) to measure the required user effort for the overall
text recognition process in Strabo and the performance of the Text Layer
Extraction step. This is because the goal of the Text Layer Extraction
step is to help reduce the required user interaction during the text recognition
process.

Although the Text Layer Extraction step itself may be seen as a bi-
nary classification problem (i.e., classifying map pixels into text and non-text

22 Yao-Yi Chiang, Craig A. Knoblock

(a) ITM map (b) GECKO map

(c) GIZI map (d) RM map

(e) UNAfg map (f) From left to right, Google, Live, OSM,
MapQuest, and Yahoo maps

Fig. 14 Example test maps

groups), using a precision-recall metric to measure the pixel classification re-
sult does not provide a good indicator of the final text recognition rate. For
example, missing the dot in ‘i’ does not usually affect the recognition result,
but missing the upper part of ‘b’ can lead to an incorrect recognition result
(i.e., the character would be identified as ‘D’). In addition, the classification
ground truth cannot be objectively defined. For example, a pixelated charac-
ter can be recognized with or without all the “shadow” pixels surrounding the
character. The goal of this step is to extract all text colors (not text pixels)
from the map. There could be pixels of non-text objects that were in the same
color of text, and these non-text objects will be identified and removed in the
later steps (of which the performance were measured using the overall text
recognition precision/recall).

Table 2 shows the number of extracted text layers, text colors (in the quan-
tized maps), and text and non-text examples used for extracting the text lay-
ers. The nature of the original map (e.g., image quality, scanned vs. computer
generated) and the color segmentation process in the Text Layer Extrac-
tion step dictated the number of text and non-text examples needed for each
input map. For the ITM, GECKO, and GIZI maps, the color segmentation

Recognizing Text in Raster Maps 23

Table 2 The number of extracted text layers, text colors (in the quantized maps), and the
number of user labels for extracting the text layers

Source # of Text Layers # of Text Colors # of Text/Non-Text
Examples

ITM 3 7 6/3
GECKO 3 3 3/2

GIZI 2 2 2/2
RM 2 2 2/2

UNAfg 2 2 2/2
Google 2 45 2/4

Live 2 41 6/12
OSM 2 200 3/10

MapQuest 2 75 3/6
Yahoo 2 31 1/1

process generated solid characters. The RM and UNAfg maps did not require
the color segmentation process because they contain only a few colors and
have solid characters in the original map. The ITM, GECKO, and GIZI maps
after the color segmentation process contain solid characters. Therefore, fewer
examples were needed for extracting a text layer from the RM, UNAfg, ITM,
GECKO, and GIZI maps. For the other maps that have pixilated, non-solid
characters, the higher numbers of examples were used due to the fact that
more non-text examples were used. Traditionally (without Strabo), when a
user needs to manually select one (or more pixels) for each of the text colors,
the number of user interaction steps is a function of the number of colors in
the text layer. In contrast, with Strabo the user provides examples that cover
a number of pixels with multiple colors so that even if the number of text
colors increased significantly, the number of user interaction steps would still
be low. For example, the OSM contained 200 text colors but the number of
text/non-text examples was 3/10 compared to 2/2 for GIZI maps where the
number of text colors was 2.

Table 3 shows the numeric results from using Strabo and using the FineReader
itself to recognize text strings in the 15 test maps. We empirically set the size
ratio (the max size ratio in the CDA pseudo-code) to 2, the distance ratio (the
max distance ratio in the CDA pseudo-code) to 1/5, and the desired curvature
ratio (the max curvature ratio in the CDA pseudo-code) to 30%.

A larger value of the size ratio will cause the CDA to link characters with
different font sizes, and a smaller values can lead to broken strings (depend-
ing on the font type). The distance ratio determines the maximum character
spacing within a string. In a map with crowded strings that are in the same
orientation, the distance ratio should be set to a lower number to prevent the
incorrect merging of individual strings. Further effort is required to automat-
ically determine the best size ratio and distance ratio for individual maps.

The desired curvature ratio controls the breaking point(s) of a curved
string. A lower number for the curvature ratio will make the CDA break the

24 Yao-Yi Chiang, Craig A. Knoblock

strings that are slightly curved, which can be a desired outcome if the OCR
process can only handle strictly straight text strings. The FineReader does
handle slightly curved strings and hence we used the desired curvature ratio
of 30%.

Strabo extracted 6,708 characters and 1,383 words from the test maps
and ABBYY FineReader 10 extracted 2,956 characters and 655 words. Strabo
produced higher numbers compared to only using FineReader in all metrics,
especially the recall. This is because Strabo successfully analyzed the map
contents and grouped the multi-oriented and multi-sized characters into in-
dividual text strings for OCR. Moreover, Strabo correctly identified curved
strings that have their curvature within the desired curvature ratio (30%),
such as the example shown in Figure 16(a).

The FineReader did not do well on identifying text regions from these test
maps because of the non-homogenous text content in the maps. In particular,
ABBYY FineReader 10 could not detect any text region from the Google,
OSM, MapQuest, and Yahoo maps, and hence the precision and recall are 0
at both the character and word levels. Most of the correctly recognized strings
were either in or slightly skewed from the horizontal or vertical directions.

To obtain the best text recognition results that the FineReader could
achieve (with additional manual work), we rotated each of the test maps from
Google, Live, OSM, MapQuest, and Yahoo maps (a total of 10 maps) from
0◦ to 355◦ using a 5◦ increment (a total of 72 images for each map) so that
every string was horizontally placed in at least one of the 72 images. Then we
used the FineReader to process these rotated images and manually selected
the correctly recognized characters/words from the recognition results of all
72 images.

If a character/word was correctly recognized in one (or more) of the 72
images, we counted it as a correctly recognized character/word. For example,
given a word “Main” in a test map, after we processed the 72 images using
the FineReader, if one or more of the recognition results from the 72 images
contained the correctly recognized word “Main”, we recorded one correctly
recognized word and four correctly recognized characters. The recognition pre-
cision of this manual process cannot be objectively calculated. This is because
the final results were manually selected from all of the results, and the total
number of recognized character/words (the denominator for calculating pre-
cision) might change if we changed the angle of rotation. For example, a 2◦

increment to rotate the original map would generate 180 test images. Since
a character would be correctly recognized in only a few of these test images,
increasing the number of the test images would increase the denominator for
calculating precision and thus reduce the precision.

Table 4 shows the recognition results from Strabo, the FineReader with a
map rotated a 5◦ increments, and FineReader on the original map. For the
Live maps, the multiple rotations helped to improve the recall since some of
the non-horizontal strings were correctly identified from one of the rotated
images. For other map sources, the additional rotations did not help much. In

Recognizing Text in Raster Maps 25

Table 3 Text recognition results using Strabo and ABBYY (F. is the F-Measure)

Source System
Char Char Char Word Word Word
Precision Recall F. Precision Recall F.

ITM
Strabo 93.6% 93.3% 93.5% 83.3% 82.6% 82.9%
ABBYY 86.4% 45.6% 59.7% 57.5% 33% 41.9%

GECKO
Strabo 93.4% 86.3% 89.7% 83.1% 77.1% 80%
ABBYY 77.8% 41% 53.7% 66.2% 37.2% 47.7%

GIZI
Strabo 95.1% 77.3% 85.3% 82% 63.6% 71.6%
ABBYY 71.3% 16.% 26.7% 51.4% 10.9% 18%

RM
Strabo 93.4% 94% 94.1% 87.9% 84.9% 86.4%
ABBYY 71.8% 10.4% 18.1% 23.5% 3% 5.3%

UNAfg
Strabo 91.5% 88% 89.7% 82.3% 80.2% 81.3%
ABBYY 65.6% 56% 60.4% 34.8% 36.5% 35.7%

Google
Strabo 97.3% 91.7% 94.4% 89.2% 85.8% 87.5%
ABBYY 0% 0% 0% 0% 0% 0%

Live
Strabo 94.7% 93.5% 94.1% 75.3% 76.5% 75.9%
ABBYY 51.8% 47.6% 49.6% 47.8% 53.1% 50.3%

OSM
Strabo 95.4% 77.7% 85.7% 74.3% 69% 71.6%
ABBYY 0% 0% 0% 0% 0% 0%

MapQuest
Strabo 91.3% 84% 87.5% 81% 75.8% 78.3%
ABBYY 0% 0% 0% 0% 0% 0%

Yahoo
Strabo 69.7% 63.5% 66.5% 43.1% 40.7% 41.9%
ABBYY 0% 0% 0% 0% 0% 0%

Avg. Strabo 92.7% 87.9% 90.3% 82% 77.5% 79.7%
Avg. ABBYY 71.9% 30% 42.4% 46.1% 20.6% 28.5%

most cases, the FineReader could not identify any text regions even when the
strings were rotated to the horizontal direction.

5.2 Result Analysis

Overall Strabo achieved accurate text recognition results on both the character
and word levels. The errors in Strabo’s results came from several factors:

(i) The poor image quality of the test maps could result in poor quality of
the text layers, such as broken characters or the existence of non-text objects in
the text layer. In our experiments, the GIZI map had the worst image quality
among the scanned maps, and hence the result numbers of the GIZI map were
the lowest among the maps with solid characters.

(ii) The similarity between symbols led to false positives. There were many
short strings of “Pl” for place in our test maps, and most of them were misiden-
tified as “PI” (a capital ‘p’ and a capital ‘i’). This is because in some font types,
the capital ‘i’ is printed as ‘l’ and the OCR software mismatched the two let-
ters. Moreover, a string could be misidentified as a totally different string when

26 Yao-Yi Chiang, Craig A. Knoblock

Table 4 Text recognition results using Strabo, ABBYY with manual image rotation and
result selection, and ABBYY alone

Source System
Char Word
Recall Recall

Google
Strabo 91.7% 85.8%
ABBYY with rotated maps 3% 2.8%
ABBYY 0% 0%

Live
Strabo 93.5% 76.5%
ABBYY with rotated maps 75.9% 73.4%
ABBYY 47.6% 53.1%

OSM
Strabo 77.7% 69%
ABBYY with rotated maps 0% 0%
ABBYY 0% 0%

MapQuest
Strabo 84% 75.8%
ABBYY with rotated maps 4.6% 6.5%
ABBYY 0% 0%

Yahoo
Strabo 63.5% 40.7%
ABBYY with rotated maps 0% 0%
ABBYY 0% 0%

the string was upside down, especially short strings, such as “Pl” and “ld” or
“99” and “66”. Figure 15 shows an example of the string “Zubaida” could be
misidentified as “epieqnz”. This type of false positive resulting from similar
symbols is very difficult to remove if the actual orientation of the string is
unknown. One possible solution is to introduce additional knowledge of the
map area to filter out unlikely results, such as “ld” and “PI” (a capital ‘p’ and
a capital ‘i’).

Fig. 15 The string “Zubaida” can be mis-identified as “epieqnz”

(iii) Strabo could not detect correct orientations for significantly curved
text strings, and the OCR software could not recognize all characters in curved
strings. Figure 16(a) shows two examples of curved strings detected by Strabo
and the rotated horizontal strings according to their detected orientations. If
the string was slightly curved, such as the first row in Figure 16(a), Strabo
could detect correct orientation so that one of the rotated horizontal strings
is correctly oriented (the third string on the first row in Figure 16(a)). For the
significantly curved strings, such as the second row in Figure 16(a), Strabo
could not detect the correct orientation. However, even if Strabo identified
the correct orientation for the slightly curved strings, the OCR software could

Recognizing Text in Raster Maps 27

not recognize all characters of the string because the string is not straight.
To overcome this problem, Strabo could use a lower threshold on comparing
the connecting angle to the baseline for breaking any curved strings. Then,
post-processing to merge the recognition results of the pieces of the curved
strings can be used to recover the broken strings.

(iv) The CDA might not group strings with wide character spacing. The
characters in a string that had wide character spacing were not correctly
grouped since the CDA used a distance threshold depending on the sizes of the
characters. For example, Figure 16(b) the string “Hindu Kush” in the UNAfg
map were not identified correctly.

(a) Curved strings

(b) Wide character spacing

Fig. 16 Examples of the strings that could lower the recognition accuracy

(v) The OCR software could not recognize some of the pixilated, non-solid
characters. For the pixilated non-solid characters, a character is not necessarily
an individual connected component, and the CDA might generate incorrect
string blobs. The Yahoo maps had the most pixilated characters and hence the
result numbers were the lowest. In addition to the incorrect string blobs, the
pixilated characters are difficult for a machine to recognize, although humans
can recognize the pixilated characters from a distance.

(vi) The CDA might group characters with non-text objects. If there exist
non-text objects in the CDA input and a non-text object was close to one
end of a string and has a similar size as the ending character, the CDA would
connect the end character to the non-text object. This would result in in-
correctly detected orientation. A connected-component filter can be used to
post-process the extracted text pixel for removing this type of error. How-
ever, the connected-component filter would need careful parameter settings
and might also remove characters.

28 Yao-Yi Chiang, Craig A. Knoblock

(vii) Since the FineReader is a desktop version OCR software, the recogni-
tion results included only limited information. We could incorporate an OCR
software development kit (SDK), such as Tesseract, to obtain more detailed
information of the recognition results, such as the confidence level for each
character, to improve the overall accuracy.

5.3 Computation Time

We built Strabo using Microsoft Visual Studio 2008 running on a Microsoft
Windows 2003 Server powered by a 3.2 GHz Intel Pentium 4 CPU with 4GB
RAM. The average processing time for the CDA on a 1688x1804-pixels text
layer of 626 characters was 37 seconds, for a 2905x2384-pixels text layer of 1092
characters was 39 seconds, and for a 850x550-pixels text layer of 78 characters
was 2.6 seconds. Dominant factors of the computation time are the image size,
the number of characters, and the shortest distance between two characters in
a string (a longer distance requires more iterations for the CDA to converge).
The average processing time for detecting the orientation on a string longer
than three characters was 2.2 seconds (on a total of 922 strings), and the
dominant factor on the computation time was the length of a string.

6 Conclusion and Future Work

We presented a general approach that requires only a few user interaction steps
for text recognition from raster maps. We compared our approach to a state-of-
art commercial OCR product using 15 raster maps from 10 sources. We showed
that our approach enabled the commercial OCR product to handle raster
maps and together produced significantly higher text recognition accuracy
than using the commercial OCR alone. We demonstrated that our approach
can be easily integrated with a commercial OCR product to support text
recognition from documents for which classic layout analysis techniques do
not work.

In the future, we plan to use multiple maps of the same region to improve
the OCR accuracy. For example, for a set of maps covering the same region,
we can first recognize text labels in each of the maps and use the mutual
information to help improve the overall recognition accuracy. We can also
build gazetteers from historical maps and compare the built gazetteers with
data from other sources for spatial-change analysis. We plan to broaden the
coverage of our technique to handle documents with touching characters, such
as by incorporating a character segmentation method [Roy et al., 2009]. We
will explore the options to incorporate image segmentation techniques such as
Lazy Snapping [Li et al, 2004] and GrabCut [Rother et al, 2004] in the step
to extract text layers. Lazy Snapping [Li et al, 2004] and GrabCut [Rother
et al, 2004] can help identify the text boundaries and hence further reduce the
amount of manual work and user decisions (such as selecting a quantized map
for text recognition).

Recognizing Text in Raster Maps 29

7 Acknowledgements

This research is based upon work supported in part by the University of South-
ern California under the Viterbi School of Engineering Doctoral Fellowship.

References

Adam, S., Ogier, J., Cariou, C., Mullot, R., Labiche, J., and Gardes, J. (2000).
Symbol and character recognition: application to engineering drawings. In-
ternational Journal of Document Analysis and Recognition, 3(2):89–101.

Cao, R. and Tan, C. L. (2002). Text/graphics separation in maps. In Proceed-
ings of the Fourth IAPR International Workshop on Graphics RECognition,
pages 167–177.

Chen, C.-C., Knoblock, C. A., and Shahabi, C. (2008). Automatically and
accurately conflating raster maps with orthoimagery. GeoInformatica,
12(3):377–410.

Chen, L.-H. and Wang, J.-Y. (1997). A system for extracting and recognizing
numeral strings on maps. In Proceedings of the 4th International Conference
on Document Analysis and Recognition, volume 1, pages 337–341.

Chiang, Y.-Y., Knoblock, C. A., Shahabi, C., and Chen, C.-C. (2009). Ac-
curate and automatic extraction of road intersections from raster maps.
GeoInformatica, 13(2):121–157.

Chiang, Y.-Y and Knoblock, C. A. (2010). An approach for recognizing text
labels in raster maps. In Proceedings of the 20th International Conference
on Pattern Recognition, pages 3199–3202.

Chiang, Y.-Y. and Knoblock, C. A. (2011). Recognition of multi-oriented,
multi-sized, and curved text. In Proceedings of the 11th International Con-
ference of Document Analysis and Recognition, pages 1399–1403, 2011.

Chiang, Y.-Y. and Knoblock, C. A. (2013). A general approach for extracting
road vector data from raster maps. International Journal of Document
Analysis and Recognition, 16(1):55-81, 2013.

Chiang, Y.-Y. and Knoblock, C. A. (2012). Generating named road vector
data from raster maps. Geographic Information Science, Lecture Notes in
Computer Science, volume 7478/2012, pages 57–71, 2012.

Deseilligny, M. P., Mena, H. L., and Stamonb, G. (1995). Character string
recognition on maps, a rotation-invariant recognition method. Pattern
Recognition Letters, 16(12):1297–1310.

Edmondson, S., Christensen, J., Marks, J., and Shieber, S. M. (1996). A
general cartographic labelling algorithm. Cartographica: The International
Journal for Geographic Information and Geovisualization, 33(4):13–24.

Fletcher, L. A. and Kasturi, R. (1988). A robust algorithm for text string
separation from mixed text/graphics images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 10(6):910–918.

30 Yao-Yi Chiang, Craig A. Knoblock

Gelbukh, A., Levachkine, S., and Han, S.-Y. (2004). Resolving ambiguities in
toponym recognition in cartographic maps. In Proceedings of the 5th IAPR
International Workshop on Graphics RECognition, pages 104–112.

Goto, H. and Aso, H. (1998). Extracting curved text lines using local linear-
ity of the text line. The International Journal on Document Analysis and
Recognition, 2(2–3):111–119.

Kanai, J., Rice, S. V., Nartker, T. A., and Nagy, G. (1995). Automated evalu-
ation of OCR zoning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(1):86–90.

Leyk, S. and Boesch, R., (2010). Colors of the Past: Color Image Segmentation
in Historical Topographic Maps Based on Homogeneity. GeoInformatica,
14(1):1–21.

Li, L., Nagy, G., Samal, A., Seth, S. C., and Xu, Y. (2000). Integrated text
and line-art extraction from a topographic map. International Journal of
Document Analysis and Recognition, 2(4):177–185.

Li, Y., Sun, J., Tang, C.-K., and Shum, H.-Y. (2004). Lazy snapping. In ACM
Transactions on Graphics, 23(3): pages 303–308.

Mao, S., Rosenfeld, A., and Kanungo, T. (2003). Document structure analysis
algorithms: A literature survey. Proceedings of the SPIE Conference on
Document Recognition and Retrieval X, 5010:197–207.

Mori, S., Suen, C. Y., and Yamamoto, K. (1995). Historical review of OCR
research and development. Document image analysis, pages 244–273.

Myers, G. K., Mulgaonkar, P. G., Chen, C.-H., DeCurtins, J. L., and Chen,
E. (1996). Verification-based approach for automated text and feature ex-
traction from raster-scanned maps. In Lecture Notes in Computer Science,
volume 1072, pages 190–203. Springer.

Nagy, G., Samal, A., Seth, S., Fisher, T., Guthmann, E., Kalafala, K., Li, L.,
Sivasubramaniam, S., and Xu, Y. (1997). Reading street names from maps
- technical challenges. In GIS/LIS conference, pages 89–97.

Nagy, G. L., Nartker, T. A., and Rice, S. V. (2000). Optical character recog-
nition: An illustrated guide to the frontier. In Proceedings of the SPIE
International Symposium on Electronic Imaging Science and Technology,
volume 3967, pages 58–69.

Najman, L. (2004). Using mathematical morphology for document skew esti-
mation. In Proceedings of the SPIE Conference on Document Recognition
and Retrieval IX, pages 182–191.

Pal, U., Sinha, S., and Chaudhuri, B. B. (2003). Multi-oriented english text
line identification. In Proceedings of the 13th Scandinavian conference on
Image analysis, pages 1146–1153.

Pouderoux, J., Gonzato, J. C., Pereira, A., and Guitton, P. (2007). Toponym
recognition in scanned color topographic maps. In Proceedings of the 9th
International Conference on Document Analysis and Recognition, volume 1,
pages 531–535.

Rother, C., Kolmogorov, V., and Blake, A. (2004). “GrabCut”: interactive
foreground extraction using iterated graph cuts. In ACM Transactions on
Graphics, 23(3): pages 309–314.

Recognizing Text in Raster Maps 31

Roy, P. P., Pal, U., Lladós, J., and Kimura, F. (2008). Multi-oriented English
text line extraction using background and foreground information. IAPR
International Workshop on Document Analysis Systems, 0:315–322.

Roy, P. P, Pal, U., Lladós, J., and Delalandre, M. (2009). Multi-oriented and
multi-sized touching character segmentation using dynamic programming.
In the Proceedings of the 10th International Conference on Document Anal-
ysis and Recognition, pages 11–15.

Velázquez, A. and Levachkine, S. (2004). Text/graphics separation and recog-
nition in raster-scanned color cartographic maps. In Lladós, J. and Kwon,
Y.-B., editors, Graphics Recognition, volume 3088 of Lecture Notes in Com-
puter Science, pages 63–74. Springer.

Wong, K. Y. and Wahl, F. M. (1982). Document analysis system. IBM Journal
of Research and Development, 26:647–656.

