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ABSTRACT 
A domain expert can process heterogeneous data to make 
meaningful interpretations or predictions from the data. For 
example, by looking at research papers and patent records, an 
expert can determine the maturity of an emerging technology and 
predict the geographic location(s) and time (e.g., in a certain year) 
where and when the technology will be a success. However, this 
is an expert- and manual-intensive task. This paper presents an 
end-to-end system that integrates heterogeneous data sources into 
a knowledge graph in the RDF (Resource Description Framework) 
format using an ontology. Then the user can easily query the 
knowledge graph to prepare the required data for different types 
of predictive analysis tools. We show a case study of predicting 
the (geographic) center(s) of fuel cell technologies using data 
collected from public sources to demonstrate the feasibility of our 
system. The system extracts, cleanses, and augments data from 
public sources including research papers and patent records. Next, 
the system uses an ontology-based data integration method to 
generate knowledge graphs in the RDF format to enable users to 
switch quickly between machine learning models for predictive 
analytic tasks. We tested the system using the Support Vector 
Machine and Multiple Hidden Markov Models and achieved 66.7% 
and 83.3% accuracy on the city and year levels of spatial and 
temporal resolutions, respectively. 
 
Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Spatial 
Databases and GIS 
Keywords 
Data integration; Geo-temporal ontology; Machine learning; 
Predictive analytics 

1. INTRODUCTION 
   Integrating heterogeneous data sources is typically the first 
step in any data analysis task. After the data is mapped into a 
unified representation, the next step is to generate the required 
metadata or feature vectors for different types of analytic tools.  
In this paper, we present a semi-automatic approach that  
 

 
streamlines the data analysis workflow from heterogeneous data 
sources to analytic tasks. The approach integrates data of various 
types from a number of sources into knowledge graphs so that the 
user can use the SPARQL language to easily generate feature 
vectors for different prediction methods. The main contribution of 
our approach is that the user can quickly add a new data source 
and switch data analysis methods to test different hypotheses. By 
allowing the user to switch different prediction methods 
efficiently, the system enables low-cost data exploration and 
stimulates new ideas for data analysis.  
  We demonstrate our approach using a case study on fuel 
cell related technologies in which we predict the future center(s) 
of fuel cell technologies in both the geospatial and temporal 
dimensions using two types of predictive models. The case study 
includes an end-to-end system as an implementation of our 
approach, which takes in publicly available data, models the data 
using an ontology to generate knowledge graphs in the RDF 
(Resource Description Framework) format, and uses the 
knowledge graphs for predictive analytic tasks. The system 
generates the prediction results using the spatiotemporal 
resolution of city and year level granularity. The definition of a 
“technology center” can vary depending on the available data 
sources and the user requirements. For example, a technology 
center can be a manufacturer cluster, a distributing center, or a 
research center. The case study described in this paper does not 
distinguish between these centers. 

Predicting the evolvement of a technology is an important 
but typically manual and expert-intensive task [2]. This type of 
prediction task can be summarized as by the solicitation of the 
IARPA (Intelligence Advanced Research Projects Activity) FUSE 
program (Foresight and Understanding from Scientific 
Exposition), which seeks to develop automated methods “that aid 
in the systematic, continuous, and comprehensive assessment of 
technical emergence using information found in published 
scientific, technical, and patent literature” [2]. In addition to the 
intelligence community, for investors, accurate prediction of 
technology evolvement in time and space can help them choose 
profitable geographic locations or filter out irrelevant locations for 
maximizing their investment returns. For professionals, the results 
can help them to choose the places (e.g., a city) that have more job 
opportunities matching their background. 

In the remainder of this paper, Section 2 uses a case study 
on the fuel cell technologies to present the overall system for the 
predictions of future technology centers, Section 3 presents the 
related work, and Section 4 discusses the future work. 
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2. CASE STUDY: PREDICT THE NEXT 
FUEL CELL TECHNOLOGY CENTERS 
   This section presents our system architecture and uses a case 
study to show how our system works in practice with real data. In 
the case study, we used our system to predict the future centers of 
fuel cell technologies in 2014 using the 2008 - 2013 data collected 
from IEEE (Institute of Electrical and Electronics Engineers) and 
USPTO (United States Patent and Trademark Office) as well as 
geospatial data from OpenStreetMap and GeoNames. We verified 
the prediction results using industry reports.1  
   Our overall system includes four major components (Figure 
1). The first component collects data from online sources and 
cleans the data, the second component models the data with an 
ontology to generate a knowledge graph in RDF, the third 
component queries the RDF graph to obtain the features for 
training machine learning models for the predictive analytic tasks, 
and the last component performs the predictive analytic tasks. 
 

 
Figure 1. Overall system architecture 

 
2.1 Data Collection, Cleaning, and Metadata 
Augmentation 

The data sources we used in the case study were research 
papers from the IEEE API (from 2005 to 2015), patent records 
from the USPTO website (from 2008 to 2014), administrative 
boundaries from OpenStreetMap (OSM), city populations, names, 
and their name variations (in different language) from GeoNames.  
After collecting the dataset from each of the sources, the system 
cleaned the data (e.g., remove ill-formatted address and affiliation 
information) and extracted metadata from the cleaned data. 
Figures 2 and 3 shows an instance of the metadata of the raw 
datasets of the IEEE research papers and USPTO patents, 
respectively. Tables 1 and 2 show the descriptions of their 
metadata. A portion of the collected data did not contain temporal 
and geospatial information, such as the location of the author 
affiliation, and these data were discarded. After data cleaning, 
there were 15,062 paper instances (IEEE) and 16,738 patent 
instances (USPTO).  

The system also used the OSM and GeoNames data to infer 
the geospatial relationships and properties the IEEE and USPTO 
records to add new metadata. The system used the OSM 
administrative boundary to generate the adjacent city list for the 
cities where the paper authors and patent assignees located 
automatically. Figure 4 shows an instance in the adjacent city list.  
Table 3 is the description of the keys in Figure 4. GeoNames 
provides a gazetteer that lists the cities whose population is over 
15,000. In the data modeling step, the system searched the city 
name in the gazetteer from GeoNames, and if the population of a 
city was over 15,000, the system labeled the city as a “big city”. 
This “big city” is an example of a user-defined property that can 
be useful in the final predictive analytic step. Figures 5 and 6 
shows the metadata of IEEE research papers and USPTO patents 
after data cleaning and metadata augmentation, respectively. 
Tables 1 and 2 shows the description of the metadata. All the raw, 
cleaned, and augmented data were stored in ElasticSearch for 
efficient access with scalability. 
 
                                                                    
1 A demonstration video of this case study can be accessed on: 
http://spatial-computing.github.io/video/TechPredictSys.mov 

 
Figure 2. An instance of the metadata in the raw IEEE 

data  
 

 
Figure 3. An instance of the metadata in the raw USTPO data 

 
Table 1. Key description about IEEE data 

Raw Data 
Key Description 
py The publication year of the paper 
author- 
affiliations 

The affiliation of the author 

author - name The name of the author 
Cleaned and Augmented Data 
py The publication year of the paper 
Author’s 
Address- City 

The city where the author’s affiliation locates 

Author’s 
Address- 
Country 

The city where the author’s affiliation locates 

AdjacentCity The name of the cities adjacent to the location of 
the author affiliation 

 
 
 
 
 
 



 
Table 2. Key description about USPTO data 

Raw Data 
Key Description 
StartDate The date when the patent was assigned to the 

assignee 
Name The name of the assignee 
Address The address of the assignee 
AddressRegion The region (state level) where the assignee 

locates 
AddressCountry The country that where assignee locates  
Cleaned and Augmented Data 
StartDate The date when the patent was assigned to the 

assignee 
EndDate The date when the patent was assigned to 

another assignee 
Author’s 
Address- City 

The city where the assignee locates 

Author’s 
Address- 
Country 

The country where the assignee locates  

AdjacentCity The name of the cities adjacent to the location 
of the assignee  

 
Table 3. The description of the dictionary in Figure 4 

Key Description 
coordinate The longitude and latitude of the city 
city The name of the city 
Adjacent All cities that are adjacent to the city stored in 

a list of tuples. The first element in the tuple is 
the city name in English, and the second 
element is the city name in the local language. 

 

 
Figure 5. An instance of the metadata in the IEEE data 

after data cleaning and metadata augmentation 
 

 
Figure 6. An instance of the metadata in the USTPO data 

after data cleaning and metadata augmentation	
  
 
2.2 Data Modeling 
 The goal of this component is to generate a RDF graph 
representing the data collected from the Internet. We combined 
and extended two existing ontologies to create a simple ontology 
for representing spatiotemporal datasets. For the geospatial 
properties, we used the ontology in Karma [7] and added the 
adjacent relationship. The adjacency relationship existed between 
two entities if they shared the same border. For the temporal 
properties, we used the ontology created by Hobbs and Pan [8]. 
 Figure 7 shows the basic ontology in our system, called 
geo-temporal ontology. The geo-temporal ontology contains one 
class, seven data properties, and one object property. An entity 
represents a record in the collected datasets. If the entity lasts for a 
period of time, we use the "interval" property to model the 
temporal dimension. If an entity happens at a specific time, we 
use the “instance” property. The “hasCity” and “hasCountry” 
properties indicate the administrative jurisdictions of the entity 
location.  The “isAdjacentTo” property connects the entity and its 
adjacent cities. This ontology is only a preliminary design to 
capture the spatiotemporal relationships between data records for 
the case study. One important component of this ontology is that it 
captures the adjacency relationship between cities, which helps to 
model the First Law of Geography, according to Tobler, 
“everything is related to everything else, but near things are more 
related than distant things.” 
 For the case study, we needed to distinguish between big 
and small cities based on the population. Hence, we added a  
“isBigCity” property into the basic ontology to accommodate the 
metadata for city sizes derived from the data sources. This also 
demonstrates the flexibility of using a knowledge graph for 
integrating new data sources that might have useful, unique 
metadata. Figure 8 shows the ontology we used for the case study 

 
                   Figure 4. An adjacent city instance 

 



(the updated geo-temporal ontology). 
 With the updated geo-temporal ontology, in the case study, 
we used a Python script to map the structured data collected and 
cleaned in the previous step to a RDF graph. The user can access 
the RDF graph by issuing SPARQL queries. 
 

 
Figure 7. Geo-temporal ontology 

 

 
Figure 8. Updated Geo-temporal ontology for the case study 

 
2.3 Feature Generation for Predictive Analytic 
Tasks 

In this component, the user writes SPARQL queries against 
the RDF graph created in the previous step (Section 2.2) to 
generate features for training a predictive model. Since at this step, 
all data sources are already integrated into the RDF graph by the 
ontology, the user only has to be familiar with the ontology for 
writing queries to prepare data for different predictive models and 
does not need the knowledge of the structures of the original 
sources. Figure 9 shows an example of the SPARQL query used 
in the case study to generate the feature for training the predictive 
models (Section 2.3). In Figure 9, the SPARQL returns the total 
number of patents in Toyota’s adjacent cities in 2008. (Toyota is a 
city in Japan.) Figure 10 is another example of querying features 
for prediction analysis. The query checks the knowledge graph to 
see whether or not Los Angeles is a big city. The query returns 1 
as a big city, 0 as not a big city. 
 

 
Figure 9. Querying the knowledge graph for the total number 

of patents in the adjacent cities of the city of Toyota 

 

 
Figure 10. Querying the knowledge graph to check if Los 

Angeles is a big city 

 
2.4 Predictive Analytics 

In the case study, we used two machine learning models to 
predict the future centers of fuel cell technologies and compared 
their performance. We used a non-time-series model – Support 
Vector Machine (SVM) [13] and a time-series model – Multiple 
Hidden Markov Models (Multi-HMMs) [14]. 

For both models, we queried the RDF graph to obtain data 
from 2008 to 2013 as the training data. Since we did not have the 
ground truth of the training data (i.e., the true fuel cell centers), 
we used New York Times articles between 2008 and 2013 to help 
us label the training data. If a New York Times article mentioned 
“fuel cell” and a city name, we gave the city a positive count. If a 
city accumulated more than three positive counts, we said this city 
was the technology center of fuel cell technologies (a positive 
example). If a city was mentioned once but had less than three 
positive counts, we used it as a negative example for training both 
predictive models. 

For testing the predictive models, we manually used a series 
of the industry reports [9 - 12] to determine the ground truth in 
2014. Our steps were as follows. In [9], the report provides the 
market share of companies in the fuel cell industry on the country 
level in 2014. We used the countries with the market share over 
10% as (country level) centers for fuel cell technologies. These 
were three countries, Japan, Germany, and United States. 

For Japan, the industry report [10] contains the number of 
installations of fuel cell stations in major Japanese cities in 2014. 
We used the Japanese cities with more than five stations as the 
cities of fuel cell centers in 2014. For Germany, the industry 



report [11] provides the geospatial distributions of the fuel cell 
infrastructure in Germany in 2014. We manually identified the 
city in the clusters of fuel cell infrastructure as the cities of fuel 
cell centers in 2014. For the United States, the industry report [12] 
shows the locations of the fuel cell companies that the U.S. 
Department of Energy (DOE) has funded. We selected the cities 
with companies having more than 4.5 million funding from the 
US DOE as the cities of fuel cell centers. 

In sum, according to the industry reports [9 - 12], we 
selected a total of six instances (cities) of fuel cell centers in 2014, 
which were Tokyo and Nagoya in Japan, Livermore and Danbury 
in the US, and Stuttgart and Frankfurt in Germany. Our goal was 
to successfully identify these six cities using the model trained 
with data from 2008 to 2013.  

 
2.4.1 Support Vector Machine Performance 

Table 4 shows the features used in the SVM model. Figure 
11 shows the format of the feature vector for SVM. These features 
were obtained by using a SPARQL query against the RDF graph. 
The SVM model successfully predicted four fuel cell centers with 
an accuracy of 66.67%. The SVM model missed Nagoya, Japan, 
and Frankfurt, Germany. The reason that the model did not 
successfully identify these two cities could be that the data 
sources could not directly infer the center definition in Japan and 
Germany. The center definition for Japanese and German cities 
was based on the installations of fuel cell infrastructure, and the 
RDF graph was about the fuel cell manufacturing and research 
centers (i.e., patents and research papers). 

 
 

Table 4. Feature components for SVM 
Feature Description 
Big City If the city candidate has a population over 

15,000, the value of this feature component is 1; 
otherwise, the value of is 0. 

# Papers The number of IEEE research papers produced 
in the city candidate each year 

# Patents The number of patents produced in the city 
candidate each year 

#Paper of 
adjacent cities 

The sum of the numbers of IEEE research papers 
produced in the adjacent cities of the city 
candidate each year 

# Patents of 
adjacent cities 

The sum of numbers of patents produced in the 
adjacent cities of the city candidate each year 

  

 
Figure 11. The format of feature vectors 

 
2.4.2 Multiple Hidden Markov Models Performance
 We also tested the Multiple Hidden Markov Models [13] to 
predict the future fuel cell centers. We trained four HMMs, 
namely, HMM1, HMM2, HMM3, and HMM4. The time 
component t was at the yearly level. The observations for HMM1 
were the number of IEEE research papers in a city, for HMM2 the 
number of patents in a city, for HMM3 the sum of numbers of 
IEEE research papers in adjacent cities, and for HMM4 the sum of 
numbers of patents in adjacent cities. Figure 12 shows the format 
of the observation sequence of HMM2. Figure 13 shows Toyota’s 
(a city in Japan) observation sequence of HMM2. The formats of 
other HMMs are similar to the format of HMM2. The format of 

the observation sequences for HMMs are very different from the 
feature vectors used in SVM. By using SPARQL to query the 
knowledge graph, we could generate various types of feature 
vectors for efficiently testing different predictive models. The 0 
state for HMMs meant that the city was not the fuel cell center at 
time t. The 1 state for HMMs meant that the city was the fuel cell 
center at time t. The hidden state chain and observation chain 
from 2008 to 2013 were put into the model to learn the transition 
and emission probability matrixes. To test the model, we put the 
observation chain from 2008 to 2014 into the model, and each 
model gave us the probability of being the fuel cell center in 2014.  
We also assumed that the if the fuel cell technology was 
promising in adjacent cities of a city, the city was more likely to 
be a center. Therefore we assigned higher weights to the HMM3 
and HMM4. The weights of HMM1 and HMM2 were both 0.2. The 
weights of HMM3 and HMM4 were both 0.3. The accuracy of the 
Multi-HMMs was 83.3%. The model successfully predicted every 
center correctly but not the city of Frankfurt, Germany. Again, 
just like the SVM result, this error could be a result from the fact 
that the data sources did not fully support the center definition in 
our ground truth. 
 

 
Figure 12. The format of the observation sequence for 

HMM2 
 

 
Figure 13. Toyota’s observation sequence for HMM2 

 
2.4.3 Comparison of Two Models 
   Figure 14, 15, 16 show a map visualization of the prediction 
results in Japan, Germany, and the United States, respectively 
compared with ground truth. The spots in the maps represent the 
locations of the fuel cell technology centers. The performance of 
Multi-HMMs was better than SVM by one city. The reason could 
be that the temporal evolvement of the feature vector was 
important in the analysis and using the differences between 
feature vectors (i.e., the numbers of IEEE research papers and 
patents) at different years were more robust than the absolute 
value. Intuitively, if for a given year, the values of the feature 
component increased from the previous year, the city was more 
likely to be the center of that year. While if for a given year, the 
values of the feature components stayed the same or had small 
differences from the previous year, the city might not be the 
center of that year. From this preliminary experiment, the 
time-series model could be more suitable for the problem of 
identifying the center of fuel cell technologies. 
   To sum up, the case study showed that a user could easily 
test different predictive models and compare the results without 
tackling with the raw data from the sources. 



 
Figure 14. The fuel cell centers in Japan: from left to right, 

they are the ground truth, prediction result of multi-HMMs, 
and prediction result of SVM 

 

 
Figure 15. The fuel cell centers in Germany: from left to right, 
they are the ground truth, prediction result of multi-HMMs, 

and prediction result of SVM 
 

  
Figure 16. The fuel cell centers in the United States: from left 

to right, they are the ground truth, prediction result of 
multi-HMMs, and prediction result of SVM 

 

3. RELATED WORK 
There exist many studies demonstrating the benefit of integrating 
heterogeneous data sources for predictive analysis, especially in 
the biology domain. Myers and Troyansakaya [15] integrated 
diverse genomic data using a Bayesian network to capture the 
context-dependent reliability variation. After integrating the 
genomic data, the performance of the network predictions can be 
improved significantly. Allen et al. [16] showed that utilizing 
three complementary types of data would afford predictive models 
that outperform traditional models built using fewer data types. 
They demonstrated that using integrative technique on predictive 
toxicological studies can improve predictive power. Kim et al. [17] 
proposed a graph-based framework for integrating multi-omics 
data and genomic knowledge to improve the prediction 
performance of clinical outcomes based on experiments on an 
ovarian cancer dataset to predict the stage, grade, and survival 
outcomes.  

Our system provides an efficient workflow for integrating 
heterogeneous data sources for data analysis. The user can easily 
switch different types of analysis methods by using SPARQL to 
generate feature vectors for a specific analysis method.  
   In the domain of predicting the future centers of a certain 
technology, there are a few existing studies about technology 
evolvement concerning both the geospatial and temporal 
dimensions. Leydesdorff and Rafols [6] collected data about a 
specific technology and detected patterns underlying the 
technology development. In [6], the proposed method plots data 

on Google Maps by using the Science Citation Index as the data 
source for two types of technologies. They detected the small 
world and preferential attachment characteristics, but do not go 
further to support predictive analytics.  

Other studies focus on the prediction of the technology 
evolvement in the temporal dimension but not the geospatial 
dimension (e.g., [1, 4, 5]). Kim et al. [1] used Elsevier research 
papers and European Patent Office (EPO) patent records as their 
data sources to predict whether or not a technology will emerge in 
the future. Their work did not take the location dimension into 
consideration. 
   The Korean Institute of Science and Technology 
Information developed a system called InSciTe Advanced [4], 
which used Semantic Web technologies to integrate a variety of 
data sources to discover the technology life cycle and forecast 
technology maturity. The system InSciTe provided five major 
services: (1) trends and predictions, (2) technology levels, (3) 
relationship paths, (4) roadmaps, and (5) competitors and 
collaborators. Similar to the work in [1], the system InSciTe does 
not predict possible geographic locations of the technologies.  
   In contrast, we presented a system that integrates data from 
public sources and enables users to efficiently perform predictive 
analytic tasks on the geospatial and temporal dimensions. 
 

4. DISCUSSION AND FUTURE WORK 
   This paper presented a semi-automatic approach that 
streamlines the data analysis workflow from heterogeneous data 
sources to analytic tasks. We demonstrated this system in a case 
study that integrates heterogeneous data sources to a knowledge 
graph in RDF to efficiently support predictive analytic tasks. The 
advantages of our system are (1) users can easily add new data 
sources to the knowledge graph by mapping the source to the 
ontology or extending the ontology if needed; (2) different 
prediction analysis methods can be efficiently tested on the 
integrated data by using SPARQL. To verify the feasibility of our 
system, we used a case study for predicting the future centers of 
the fuel cell technologies in both the geospatial and temporal 
dimensions. In the case study, two different types of predictive 
models were used. We showed that our system provided an 
end-to-end approach that extracted data from public sources, 
integrated the data using a domain independent ontology, 
published the integrated data as an RDF graph, and queried the 
graph to enable predictive analytics with two types of machine 
learning models. 
   We plan to improve the work presented in this paper in 
several ways. First, the current data extraction method only 
supports keyword search for finding relevant data given a data 
source (e.g., querying the patent records using “fuel cell” to find 
patent entries of fuel cell technologies). We plan to use the data 
returned by keyword search to further build a knowledge base of a 
certain technology and use the knowledge base to find more 
relevant records in the data sources. Second, we plan to add more 
data sources, such as news articles from Google News or New 
York Times or technology specific industry reports (e.g., 
[9,10,11,12]) to build a more comprehensive knowledge graph. 
Third, we plan to test the overall system with other technology 
domains, such as the solar power technologies. 
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