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ABSTRACT

Maps can be a great source of information for a given geographic region, but they can be difficult to find and
even harder to process. A significant problem is that many interesting and useful maps are only available in
raster format, and even worse many maps have been poorly scanned and they are often compressed with lossy
compression algorithms. Furthermore, for many of these maps there is no meta data providing the geographic
coordinates, scale, or projection. Previous research on map processing has developed techniques that typically
work on maps from a single map source. In contrast, we have developed a general approach to finding and
processing street maps. This includes techniques for discovering maps online, extracting geographic and textual
features from maps, using the extracted features to determine the geographic coordinates of the maps, and
aligning the maps with imagery. The resulting system can find, register, and extract a variety of features from
raster maps, which can then be used for various applications, such as annotating satellite imagery, creating and
updating maps, or constructing detailed gazetteers.
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1. INTRODUCTION

Maps provide an incredibly rich source of information T
and are available for most of the world. Figure 1 pro- Nlomes ™ TChaliiliy s
vides a 1946 Ordnance Survey map that shows the ' A~
road network, railway lines, waterways, building struc-
tures, property lines, and industries, along with text
labels for many of these features. But many maps,
such as this one, are only available in either paper or

as scanned raster files, which makes it difficult to au-
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day maps are typically made from a set of vector layers * oy LA \ Szmll|=
and rendered as a raster layer for display; but even for k- “‘\"g 5 .. <928l >
many recently constructed maps, the raster or printed ' S ot Wks ﬁ" L

maps are around long after the vector layers have been ‘ ' GRAYS

lost or discarded. The challenges are how to find maps <l T HU RROCK

of a given area, how to determine the coverage of the 5 ,.'J,C

discovered maps, how to register the maps with other m‘f:;';, ¢

geospatial sources, such as aerial imagery, and how to (}‘/’\é

extract features, such as the road and text layers, from e . ’ '

them. Figure 1 1946 Ordnance Survey Map
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There has been a significant amount of previous work on automatic map processing. This includes work on
extracting road intersections,! extracting road networks,?? extracting topographic lines,* ® performing optical
character recognition on the text,”® registering maps with imagery,? extracting other types of symbols from
maps (e.g., the symbol for a swamp),!® and so on. While there has been a great deal of work, the one thing
that all of this work has in common is that each technique focuses on a particular type of map (for example,
the USGS topographic maps* have been a focus in many research papers). Many of the proposed techniques
could be applied to other types of maps, but they would first need to be modified or tuned to work well on these
maps. The problem here is that there are almost as many types of maps as there are maps since each new map
often uses different colors, symbology, fonts, and layers for the different features. In contrast, we developed a
general approach to finding and processing raster maps. Unlike the previous work, we do not assume that we
have previously seen a given type of map. However, we do assume that the map is drawn to scale, the orientation
of the map is known (most maps are oriented with North being up and if not they indicate on the map the North
direction), the map has a road network on it, and the map provides a detailed road network (e.g., it does not
simply show the freeways or highways). Given these assumptions, our approach can process a large and diverse
set of raster maps.

In the remainder of this paper we present our end-to-end approach to discovering raster maps, registering
their precise location, and extracting road and text features from the maps. Our approach starts with a name
of a city and first searches for maps that cover that location. This is done by finding images using a search
engine and then classifying the images into the ones that are likely to be maps (Section 2). Subsequently, for
each of these maps the next step is to extract the road and text layers from these maps (Section 3). For the
road layer, the system then identifies the intersections in the road layer, including the intersection location,
road connectivity, and road orientation for each intersection (Section 4). The extracted intersections are then
compared to the knowledge of existing road networks to register the map and determine the mapping between
the intersections on the map and the ones on the road network (Section 5). Given this mapping, the system
can then align the map with the corresponding imagery using a technique called conflation (Section 6). We then
briefly describe the planned next steps in our research on feature recognition from the extracted road and text
layers (Section 7). We compare our work to the related work on these topics (Section 8). Finally, we conclude
with a summary of the contributions and promising directions for future research (Section 9).

2. RETRIEVING MAPS ON THE INTERNET

There are many interesting maps freely available on the World Wide Web, ranging from street maps to public
transportation route maps. Yet, there is no single data source that collects all of them for a given region.
Online maps are spread across sites and exist in many different formats. Sometimes they are embedded within
documents. Even commercial image search engines are inadequate for retrieving maps. We found that the
number of maps returned among the top results for queries like “Tehran maps” is small. For example, at the
time of writing this paper, the first result page on Yahoo Image Search' for this query, had only two maps among
21 images on the page.

This motivates a need for automatically and accurately finding maps on the Web. This task breaks into
two distinct sub-tasks. First, our method must find candidate map images. This process is based solely on
context, rather than deep image analysis, since analyzing the content of each image on the Web would be too
expensive both in terms of time and computational effort. The second sub-task then classifies these candidate
images as maps or non-maps, based on their image content. We use a K-Nearest Neighbors classifier based
on Content Based Image Retrieval (CBIR),!! where each image is represented by a feature vector. We have
developed a set of features based on the Water-filling algorithm'? that capture the prominent characteristics of
maps. In our previous work,'3 we describe our work on this classifier in detail. Figure 2(a) shows the architecture
of our system. The rectangles in the diagram represent collections of data (e.g., documents, images) and the
parallelograms depict processes.

*http://topomaps.usgs.gov/
Thttp://images.search.yahoo.com/



We have observed that most high quality maps
on the Web are found embedded within PDF reports
and other documents because governments, compa-
nies, and other organizations include maps in many
of their location-specific reports. Figure 2(b) shows
an example of a detailed street map embedded within
a larger PDF document. Further, these images are
large (from 2MB to 50MB), resulting in high-quality,
high-utility maps for our collection. This is in contrast
to many of the images that exist on the Web indepen-
dently of documents, since these images are smaller
(to lessen the burden on casual browsers), and hence
of lower quality. Therefore, in order to collect candi-
date maps, we query commercial search engines, such
as Google, for PDF documents related to the area.
We then download the PDFs, parse them, and extract
their images. We have developed a PDF parser, based
on the official PDF specification? by Adobe, to extract
the embedded images out of the downloaded files.

2.1 FEATURES
FOR CLASSIFYING IMAGES

Once we collect the initial set of candidate images from
documents, such as PDFs, we extract a set of features
from these candidate images that we believe capture
the defining characteristics of maps and distinguish
them from other images. These features are based
on the Water-filling algorithm.!? This algorithm sim-
ulates pouring water through the lines of an image.
As such, it operates on the edge-map of an image,
which makes it color invariant.!® Then, statistics are
generated based on the traversal of the water through
the edge map. These statistics include the time re-
quired to fill up the sections of the edge map (“Filling
Time”), the amount of water required to fill it (“Wa-
ter Amount”), and the number of points at which the
flow of water was divided into two or more streams
(“Fork Count”). We note that an edge map can result
in a number of disjoint edge sections, and therefore
our method calculates these Water-filling statistics for
all of the sections. ¥

Once our approach calculates the statistics for each
edge section, it creates a histogram of values for each
feature, putting the values into one of eight different
bins representing different intervals of values. Thus
we get a 24 element feature vector that represents the
image. Since the number of edge sections is roughly
proportional to the size of the image, we normalize the

*http: //www.adobe.com/devnet /pdf/pdf_reference.html
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Figure 2. Extracting and classifying maps on the Web

$We use the Canny edge detector'® to create our edge maps.
YA mid-sized image (800 pixels by 800 pixels) has about 1000 such disjoint edge sections.
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Figure 3. A sample image, its Canny edge map, and a part of it zoomed in to show the disjoint edge section

vector to make it size-invariant by scaling the histograms so that the total number of edge sections is equal to
1000. Figure 3 shows an example image of a map, its Canny edge map, and a section of it enlarged to show the
disjoint edge sections.

Map images, in general, have relatively longer lines, which represent streets, freeways and borders with other
regions. Accordingly, the Filling Time for most edge sections tends to be high. Also, maps have higher Fork
Counts because of the repeated branching of roads or borders. On the other hand, a typical image that is not
a map does not have such long lines. For example, a picture of vegetation will have many short segments for
edges of leaves on trees and other growth. Therefore non-map images will have Fork Counts of mostly zero or
one. The generated histograms reflect this property. A map generally skews toward larger Filling Times, Fork
Counts and Water Amounts, whereas a non-map image skews toward shorter segments and lower Fork Counts.

2.2 CLASSIFYING IMAGES USING A CBIR K-NEAREST-NEIGHBOR METHOD

Maps share many common characteristics in general, such as those described above. Yet, they come in a
wide variety (street maps, weather maps, physical maps, etc.), where each type has its own characteristics and
distribution of features, which are slightly different for each of them. For example, street maps have sparse,
straight lines, whereas contour maps have a large number of curved lines. This implies that in addition to
boundaries that exist between non-maps and all types of maps, there also exist various overlapping clusters
in the feature space corresponding to these subtypes. Yet, defining these sub-classes a priori for classification
presents a number of difficulties. For instance, should an urban-hydrographical map be its own class or should
it be a member of urban/hydrography maps?

To identify maps we use a K-Nearest Neighbor (K-NN) classifier because it can take advantage of clusters in
the feature space and implicitly model the subclasses of maps. Therefore, even as new subclasses arise, the set
of neighbors can be extended (say by adding new training maps) rather than having to train a new classifier for
a newly defined subclass. To quickly find the closest neighbors to a given image, we use Content-Based Image
Retrieval,!! where an image is represented by a set of features, and similar images (e.g., close neighbors) are
those that are closest in the space of these features. We use Ll-distance in Euclidian space as a measure of the
similarity between images, where the L1-distance between two points is the sum of the absolute differences of
their coordinates. Our resulting CBIR-based K-NN classifier takes as input an image represented in our Water-
filling feature space, and returns the nine most similar images based on our CBIR approach. If the majority of
neighbors are maps, then the input image is classified as a map. Figure 4 shows the schematic of our classifier.

To evaluate this approach, we built a repository of 4000 images (2000 maps and 2000 non-maps) by manually
labeling images taken from the Web. We included maps of US and non-US cities and of large and small
geographical regions, such as towns as well as continents. This repository covers a large range of subtypes of
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Figure 4. An example of how classification is done using a K-NN classifier based on Content Based Image Retrieval

Table 1. Performance of the two approaches

Type of set-up | Precision | Recall | Fl-measure
CBIR approach | 77.39 71.20 74.17
Desai et al. 69.23 47.62 56.43

maps. To test our classifier, we collected 4000 new images by querying Yahoo Image Search for 14 different cities
(e.g., Los Angeles, Tehran, Shanghai, etc.) and 2 continents (Asia and Africa). We retained only those images

kb ) )
that did not exist in the repository. We then classified these images using our CBIR-based approach as well as
as a baseline comparison. The results of classification using both

using the method proposed in Desai et al.
approaches are given in Table 1. As shown in the table, our approach achieves an Fl-measure of 74%, which is

about an 18% improvement over an earlier approach to the same problem

3. EXTRACTING ROAD AND TEXT LAYERS FROM MAPS

Once a set of maps has been collected from the Web, the next step is to unlock the geospatial information hidden
in those maps. The first step in this process is to separate the pixels of each geographic feature from a map. A

set of extracted pixels representing a particular geographic feature in a raster map is called a feature layer, where
i . Figure 5 shows a

the road pixels constitute the road layer and the character pixels constitute the text layer
raster map from the Via Michelin websitel and the extracted road and text layers from the map. The extracted

feature layers can be used to annotate other geospatial data; for example, we can align the extracted text layer

Ihttp://www.viamichelin.com
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with imagery to label the roads in the image, as shown in Figure 6. Further, we can convert the raster layers
to machine-readable geographic features (e.g., road vectors) and create map meta data for indexing the map (as
described in Section 7).

The extraction of feature layers is a challenging
task because of the varying image quality of raster
maps (e.g., poor quality scanned maps), the complex-
ity of maps (i.e., overlapping features in maps), and
the typical lack of meta data (e.g., map geocoordi-
nates, map source, vector data source). To overcome
these difficulties, we developed map decomposition
techniques, each requiring a different amount of user
effort to extract the road and text layers from hetero-
geneous raster maps.'6 20 Figure 7 shows our overall
approach to handling maps of varying quality. Fig-
ure 8(a) shows an example of a map with good image
quality from the Census TIGER/Line source.** Since we retrieved the raster map directly from the TIGER/Line
website without compressing the image and the map is generated digitially from vector data without scanning,
the map has consistent background colors and contains fewer colors overall compared to the scanned maps shown
in Figure 8(b) and Figure 8(c). For the raster maps with good image quality such as the TIGER /Line map, we
developed an automatic approach that exploits common map properties to extract the feature layers from the
maps.'618 We utilize the fact that the map background generally has a dominant numbers of pixels compared
with the foreground and the foreground has a high contrast against the background to first remove the map
background and then extract the foreground pixels. We then exploit the distinctive geometry between the road
lines and character strokes (e.g., road lines are longer compared to character strokes, character strokes are near
each other) to separate the road and character pixels from the foreground pixels. The automatic approach has
the benefit of using no prior knowledge of the map and no user input, but it cannot handle raster maps with poor

Figure 6. Labeling roads in an image using a map text layer

“*http://www.census.gov/geo/www /tiger/
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image quality. This is because the raster maps with poor image quality, such as scanned maps, usually contain
numerous colors and the background does not have a consistent color usage, so the map properties assumed in
our automatic approach do not hold for these maps.

To achieve broad coverage of various map sources
and varying image quality, we developed a supervised
approach, which requires user labeling to extract the
road and text layers from raster maps.!”2° The su-
pervised techniques can be used on scanned and com-
pressed maps that are otherwise difficult to process
automatically and tedious to process manually (i.e.,
manually classify each pixel/color in the raster map
based on the geographic feature the pixel/color repre-
sents). One of the supervised techniques that we de-
veloped is a pixel-based classification technique that
exploits the texture differences between areas around
text pixels, line pixels, and background pixels to auto-
matically classify each map pixel for extracting the
feature layers.!” Within a local area, the textures
of the foreground and the background are different
since the colors of the background are more consistent
while the colors of the foreground change frequently.
Among the foreground objects, lines and characters
also have different texture representations as shown in |
Figure 9(a). This pixel-based supervised approach en- o il ey 1w
ables the extraction of road and text layers from poor |
quality maps, but the training process requires the i HAMRA
user to provide individual locations of roads, charac- (b) User labels centered at road lines
ters, and background pixels in the raster map, which
can be a laborious task if the image quality is very
poor and requires many training samples.

Figure 9. The properties that the two supervised approaches
exploit for extracting the feature layers

We also developed a color-based supervised map decomposition approach that analyzes user labels of road
areas (i.e., rectangular areas specified by the user) to identify the road colors used in a raster map for extracting
the road layer.2’ The approach that the color-based technique uses to minimize user input is to exploit the
fact that a user label is required to be centered at a road line or a road intersection, as shown by the two user
labels in Figure 9(b). Since a user label is centered at a road line, if the pixels of a particular color in the user
label constitute straight lines (i.e., we detect Hough lines?! for identifying straight lines) and the lines are near
the center of the user label, the pixels are road pixels and we classify the pixel color as a road color. Using
this approach, the user only has to provide enough user labels to cover each road color in the raster map. For
example, Figure 9(b) shows an example scanned map and the two user labels required (i.e., one for the white
roads and one for the yellow roads) to extract the road layer from the map. In the experiments on the color-based
approach,?’ we show that the average number of user labels to extract the road layer from 100 test maps is less
than four per map, which is significantly less user input compared to providing pixel samples in the pixel-based
approach. In order to avoid having a user label every map, we also developed a method of classifying maps based
on the spatial relationship between colors in the maps, which allows the system to determine whether it can use
the learned road colors from maps on which the system had been previously trained.??

4. RECOGNIZING ROAD INTERSECTIONS

From the extracted road layer, we developed an automatic approach to extract a set of road-intersection tem-
plates,6:18:19 which represents an abstraction of the road network in a raster map. Figure 10 shows an example
of a road-intersection template, which consists of the road intersection position, the road connectivity, and the
road orientation. Since road networks commonly exist in various geospatial data, the set of road-intersection



templates of a raster map can serve as a reference feature in a conflation sys‘cemz?”24 to compute a transformation
matrix for aligning the map with other geospatial layers, such as imagery. Further, the aligned road-intersection
templates can be used as seed templates for extracting roads from imagery.>

Figure 11(a) and Figure 11(b) show an example map and the map’s foreground
layers (i.e., the binary map). Figure 11(c) shows the extracted road layer using
our map decomposition approach described in the previous section. Some of the
road lines in the extracted road layer are broken since a portion of the road pixels
also belong to the text layer (i.e., overlapping features), such as where characters l
touch road lines. These shared pixels are removed during the layer extraction
processes when we separate the road and character pixels from the foreground
pixels. To reconnect the broken road lines and produce the road topology (i.e.,
the central-line representation of the road network) for extracting the road inter-
sections, we first identify the road width and road format (i.e., double-line and Figure 10. An example road-
single-line roads) of the road layer. We developed the Parallel-Pattern Tracing intersection template
algorithm (PPT),'%® which employs two convolution masks working on the hor-
izontal and vertical directions to search for corresponding pixels of parallel lines to determine the road width
and road format automatically. In a road layer where road lines are drawn in two parallel lines (i.e., double-line
format) as shown in the example in Figure 11(c), the road width is the pixel distance between corresponding
road pixels on the parallel lines, as shown by the gray dashed lines in Figure 11(d). If a road line is drawn using
one line (i.e., single-line format), the detected road width is the thickness of the majority of the road lines. The
road width and road format help to determine the parameter settings in the next step, which uses morphological
operations?® to produce the road topology.

To produce the road topology, we first thicken the road lines to reconnect broken lines by utilizing the binary
dilation operator as shown in Figure 11(e). During the thickening process using the dilation operator, we also
merge parallel lines into thick single lines if the road layer is double-line format, and we determine the number
of iterations of the dilation operator (i.e., how far the foreground region should be expanded) using the road
width. Then, we apply the binary erosion operator and the thinning operator to shrink the thickened road lines
and generate one-pixel width lines as shown in Figure 11(f) and Figure 11(g). We use the erosion operator to
shrink the lines before we apply the thinning operator so that the thinning operator does not have to be applied
directly on the thick lines. This is because the thinning operator distorts lines near the intersections and the
extent of the distortion depends on the thickness of the lines before the thinning operator is applied.

With the one-pixel-width road lines, we utilize the corner detector?® to detect salient points as candidates
for road intersections as shown with the cross marks in Figure 11(h). A salient point is a point where two lines
meet at different angles and a road intersection is a point where more than two lines meet at different angles,
so we can compute the connectivity of each salient point to identify actual road intersections. We draw a box
around each salient point and then use the number of foreground pixels that intersect with this rectangle as
the connectivity of the salient point. If the connectivity is less than three, we discard the point; otherwise, it is
identified as a road intersection.

From an identified road intersection, we trace the road lines connected at the intersection to generate a road-
intersection template.!® Although the binary erosion operator helps to minimize the extent of the distortion
caused by the thinning operator, the road topology near the intersections is still not accurate, especially near
T-shape intersections. Figure 11(i) shows a distorted example of the road topology around a T-shape intersection
and Figure 11(j) shows an inaccurate road-intersection template if the distorted lines are traced to generate the
result. We use the road width detected using PPT to mark potential distortion areas as shown by the gray boxes
in Figure 11(k). This is because the extent of the distortion is determined by the thickness of the thickened lines,
which is determined by the number of iterations of the binary dilation operator based on the road width. We
then trace the lines outside the gray boxes to generate accurate road orientations and update the positions of the
road intersections based on the intersecting roads and their orientations. In the experiments on this work,'® we
show that the geometry and positions of our extracted road-intersection templates are very close to the ground
truth (i.e., manually drawn road-intersection templates). Figure 11(1) shows a portion of the extraction results
for Figure 11(a). With the accurate results, conflation applications that use the road-intersection templates as a
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Figure 11. Automatic extraction of road-intersection templates

reference feature can reduce their search space during the matching processes by using the road orientation and
connectivity as features to select possible matches. Moreover, applications that work on extracting roads from
imagery also benefit from the accurate road-intersection templates since the application can start with accurate
seed templates for identifying road areas.

5. DETERMINING THE GEOCOORDINATES OF A MAP

Once we have identified a set of road intersections from a map, we can in turn compare those intersections with
existing georeferenced road vector data to determine the coordinates of the map. We can obtain road vector
data with known coordinates for various regions of the world. For example, the US Census TIGER /Line files'f
contain road networks for the United States and NAVTEQ* NAVSTREETS covers the entire US as well as many
other regions worldwide. A prerequisite step is processing those vector datasets to produce a road intersection
database in order to compare the intersections from the map. We have built such a database covering the entire
US, where we found 11.4 million road intersections.

After detecting a set of road intersection points from each dataset (i.e., the map and the existing road vector

data) separately, the remaining problem is how to match these intersection points effectively and efficiently to
locate a common distribution (or pattern) in these intersections. Intuitively, our system uses the layout of the

TThttp: //www.census.gov/geo/www /tiger/
Hhttp: //www.navteq.com/
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Figure 12. The overall approach to determine the coordinates of a map

detected intersections from each dataset to compute their geospatial relationship. Figure 12 shows our overall
approach. Using detected road intersections as input, our system locates the common point pattern across
these two point sets by computing a proper transformation T between them. The system can then utilize this
transformation to determine the coordinates of the map.

The transformation T is a 2D rigid motion (rotation and translation) with scaling. Because the majority of
maps are oriented such that north is up, we only compute the translation transformation with scaling. A brute-
force method to resolve the point pattern matching problem would be to generate all possible matching point
pairs from both point sets to obtain the translation and scaling factors. Each transformation thus generated
could then be applied to the entire set of points in a map to determine whether the majority of the points can
be aligned to another point set. Since this algorithm would be very time consuming, we developed a number of
techniques to improve its performance by exploiting auxiliary information, such as the map scale, the connectivity
of the intersections (i.e., the number of intersected road segments), and the density of these intersections. The
basic idea is to exclude all unlikely matching point pairs. For example, given a point pair (x1, y1) and (x2, y2)
from the map, we need to only consider pairs (lonl, latl) and (lon2, lat2) from the road vector, such that the real
world distance between (x1, y1) and (x2, y2) is close to the real world distance between (lonl, latl) and (lon2,
lat2). In addition, (x1, y1) and (lonl, lat1l) would be considered as a possible matching point if and only if they
have similar road connectivity and orientation. We named this approach GeoPPM and Figure 13 illustrates how
GeoPPM works using an example. This enhanced algorithm improves the execution time by at least two orders
of magnitude. In our previous papers>% 27 we provide additional details on these techniques.

6. ALIGNING A MAP WITH IMAGERY

After GeoPPM generates a set of matched point pairs (called “control point pairs”) for the map and road vector
data, we can deform the map to align it to the road vector data utilizing these identified control point pairs.
Furthermore, in our previous work,?* we developed a technique to efficiently and automatically align road vector
data with orthorectified imagery. This implies that using the road vector as glue, we can align a map with the
corresponding imagery. We first align a road vector data with an image, and then we match map intersections
with the road vector data. Finally, we apply a technique, called rubber-sheeting, to align the map and imagery
based on the matched control-point pairs. Intuitively, imagine stretching a map as if it was made of rubber.
The rubber-sheeting algorithm deforms a map algorithmically, forcing registration of control points over the
map with their corresponding points on the imagery to accomplish the overall alignment. Rubber-sheeting is a
commonly-used method for aligning various geospatial datasets.” Figure 14 illustrates how the rubber-sheeting
technique partitions both datasets into triangular regions to define the localized transformations based on the



(a) A georeferenced road vector
dataset with a selected intersection

(d) The candidate points on the
map for the point selected in (a)
if there is no filtering to prune the

(b) An selected intersection from
the vector data with connectivity
and orientation information

(e) The candidate points on the
map for the point selected in (b)
using the intersection connectivity

search space and orientation
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(c) A selected point pair from the
vector data including the angle be-
tween the selected points

(f) The candidate point pairs on
the map for the selected point pair
in (c) based on the angles between
the points

Figure 13. Comparing a road vector dataset (a-c) with a map (d-f) using GeoPPM to prune the search space

Figure 14. Partition each dataset into corresponding triangular regions based on the control point pairs (black points on

the image and corresponding white points on the map)

control point pairs. Figure 15 illustrates the map-imagery align-
ment result after replacing the image pixels semi-transparently
with the corresponding pixels on the map by using the computed
transformation coefficients.

7. NEXT STEPS: RECOGNIZING
THE ROAD AND TEXT LAYERS

Now that we can extract the map layers and determine the precise
geocoordinates of a map, our next step is to recognize the features
of the extracted layers. In particular, we want to build accurate
road layers by turning the extracted road layer into vector data.
We also plan to work on the problem of performing optical charac-
ter recognition on the text layers. This problem can be especially

Figure 15. The map to imagery alignment result



challenging on maps with a lot of text close to the road lines and text that follows the directions of the roads.
Subsequently, given the resulting features, we plan to work on the problem of how to associate the text labels
with the road vectors. In this section, we describe our initial work on road and text recognition. In Section 3,
we already described how we can extract the road and text layers from a map. However, the output of that step
is the corresponding raster layers for each feature. The next step is to turn the road layer into vector data and
the text layer into text. This builds on the previous steps for extracting the raster layer for the roads and text,
extracting accurate intersection points, and aligning the road and text layers with the imagery.

There are two general challenges in turing a road layer from a map into an accurate vector layer. First, the
location of the vectors may not be accurate because of inaccuracies or lack of meta data about the original map.
This problem is addressed by our approach to automatically registering a map with an image as described in
Section 5. The output of the registration process is a set of control-point pairs that were used in Section 6 to
align a map with an image. The same set of control point pairs can be applied to the extracted road-vector data
to conflate the road vector data with the orthorectified aerial imagery, which will ensure that the vector data
will be properly aligned for a given region. The second challenge is that the road layer extraction process may
introduce additional inaccuracies through the use of the morphological operations needed to fill in missing pixels
and construct the single-line road network. To address this problem, we use the method for accurately recognizing
the road intersections as the starting point for the extraction of the road vector data. As described in Section 4,
we are able to accurately extract both the location and angles of the roads that comprise an intersection. We
use these extracted intersections as the seed points to trace the road lines and extract the vector data from the
road layer.2®

Recognizing the text layers is even more challenging. Some of the issues are that there may be a variety of
fonts and font sizes, the characters may be broken where they intersect with the roads, the road names may have
a variety of orientations, and on some maps the names may even follow the curvature of the roads. We plan to
start with commercial optical character recognition (OCR) software and apply it to the text of the maps since
these systems have a lot of knowledge and training to handle various fonts and character sets. However, in order
to use these systems we have to address the problem of orienting the text so that it is displayed horizontally
from left to right. One way to do that is to use the fact that the road names typically follow the orientations of
the roads to determine the correct orientation for the OCR system. We can also use the fact that characters are
grouped into words and we can group the characters to find the most likely orientation. Another problem is that
given a noisy text layer, the OCR system may make recognition errors on the individual characters. To address
this problem we plan to use background knowledge for a given region that provides the names of roads and other
features for the area. Thus, instead of just matching individual characters, OCR can be applied in the context
of entire words such that feature names in the knowledge base are preferred over unknown feature names.

8. RELATED WORK

In our previous work on harvesting maps from the internet,'® we used Laws’ Texture? as the representative

feature set to differentiate between maps and non-maps, with Support Vector Machines®® as the classifier. In
this work we use Water-filling features with a CBIR-based K-NN classifier. As demonstrated by our results,
the CBIR approach with Water-filling features surpasses the previous performance by about 18% in F1-measure
and yields a substantial processing improvement in both time and memory requirements. A lot of research has
been done in the area of finding the right features for comparing images. While we use Water-filling features as
they accurately capture the key features of a map, other studies have proposed “salient point” features based on
wavelets®! and shape similarity.3?

The CBIR-based, K-Nearest Neighbor approach has been previously used to classify medical images.?3 That
work also includes Water-filling features for the CBIR component. However, this combination performs the worst
among the five different classification systems they tested. This is because Water-filling features work best on
images with sharp boundaries and no color gradient and medical images like X-rays have amorphous boundaries
and gradual color gradients. On the other hand, maps satisfy the requirement of the Water-filling algorithm
precisely and we have exploited it to our benefit. In addition, the context in which they apply these algorithms
is very different from ours. Our system is geared towards automatically harvesting maps from the Web, while
their system is used to classify images so that they can be queried categorically.



In the previous work on text/graphics separation from raster maps, Cao and Tan” and Li et al.® utilize a
preset grayscale threshold to remove the background pixels from raster maps and then detect text labels from the
remaining foreground layers of the maps. The road pixels are the by-product after the text pixels are identified.
Since in their work”® the main goal is to recognize the text labels, they do not perform further processing to
extract the road topology of the raster map. For the previous work that focuses on recognizing road features
(e.g., road lines and intersections) from the raster maps, that work assumes a simpler type of raster map for
their automatic processing. Habib et al.! extract road intersections from raster maps that contain road lines
only. Itonaga et al.? employ a stochastic relaxation approach to first extract the road areas and then apply the
thinning operator to extract a one pixel-width road network from digitally generated maps (i.e., not scanned
maps). These approaches each handle a specific type of map. In comparison, the approach presented in this
paper is not limited to a specific map type and can be used on heterogeneous raster maps, including scanned
maps and maps that contain overlapping feature layers.

Other map processing techniques require user training to process raster maps with low image quality. Salva-
tore and Guitton* use a color thresholding method as their first step to extract contour lines from topographic
maps. Khotanzad and Zink® utilize a color segmentation method with user annotations to extract the contour
lines from the USGS topographic maps. Chen et al.% extended the color segmentation method in Khotanzad
and Zink’s work® to handle common topographic maps (i.e., not limited to the USGS topographic maps) using
local segmentation techniques. The techniques with user training are generally able to handle maps that are
more complex. However, the user training processes are complicated and labor intensive, such as manually gen-
erating color thresholds for every input map* and labeling all combinations of line and background colors.® In
comparison, our supervised color-based map decomposition approach requires the user to label only a few road
areas, which is simpler and more straightforward.

There have been a number of efforts to automatically or semi-automatically detect matched features across
different GIS datasets.? 34736 Given a feature point from one dataset, these approaches utilize different matching
strategies to discover the corresponding point on another dataset within a predetermined distance. Typically,
these existing algorithms only handle the matching of geospatial datasets in a known geometry systems (e.g.,
the same coordinate system). Moreover, various commercial GIS systems, such as ESEA MapMerger, have been
implemented to achieve the matching of vector datasets with different accuracies. However, most of the existing
commercial systems require manual work to transform two GIS datasets into the same geocoordinates beforehand.
There are no other automatic methods to resolve the matching and alignment of a map of unknown coordinates
with other datasets (i.e., road vector data or imagery). Furthermore, our technique infers the coordinates and
scale of the map.

9. CONCLUSION

In this paper we described a general approach to discovering, registering, and extracting features from raster
maps. The contributions of this work include the ability to identify maps from other types of images, the ability
to extract road and text layers from a raster map, the automatic recognition of road intersection, including the
accurate extraction of the cardinality and angles of the roads, the algorithms to automatically determine the
geocoordinates of a map using background data on the road network, and the techniques for aligning a map
with aerial or satellite imagery. A key part of this contribution are techniques that are not specific to a given
map type and can be applied to a wide range of raster maps. The result of the combination of all of these
techniques means that we can build systems that can automatically discover maps for a region, determine their
precise coverage and scale, accurately overlay the maps on top of imagery, and build a database of the road and
text layers that can be used for linking other types of information or even building new maps. Overall, these
techniques provide the ability to exploit the tremendous amount of information contained in raster maps that
was previously unavailable.

Beyond the current work on recognizing the road and text features in a map and associating the two, there are
a number of interesting directions for future research. We would like to remove or reduce some of the assumptions
identified in the beginning of the paper in terms of what types of maps can be processed. First, we would like
to be able to handle abstract road maps, which are maps that do not contain fully detailed road networks and
maps where the orientation is not known. Second, we would like to eliminate the need to know the general area



of a map in order to register a map. Once we can perform the OCR on the text layer, we can then use the
recognized text to focus on the most likely area or areas of a map, which will make it possible to process a map
without any knowledge of its general location. Third, we would like to remove the requirement that we have a
vector dataset of an area in order to align a map with that location. Once we are able to extract a road vector
layer from a map, we can then use our previous work on aligning road vector data with imagery?? to create a
vector layer for areas where no such vector layer is available. Then other maps of that region can be registered
and aligned using this new vector dataset.
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