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ABSTRACT
Air quality models are important for studying the impact of air
pollutant on health conditions at a �ne spatiotemporal scale. Exist-
ing work typically relies on area-speci�c, expert-selected a�ributes
of pollution emissions (e,g., transportation) and dispersion (e.g.,
meteorology) for building the model for each combination of study
areas, pollutant types, and spatiotemporal scales. In this paper,
we present a data mining approach that utilizes publicly available
OpenStreetMap (OSM) data to automatically generate an air quality
model for the concentrations of �ne particulate ma�er less than 2.5
µm in aerodynamic diameter at various temporal scales. Our exper-
iment shows that our (domain-) expert-free model could generate
accurate PM2.5 concentration predictions, which can be used to
improve air quality models that traditionally rely on expert-selected
input. Our approach also quanti�es the impact on air quality from a
variety of geographic features (i.e., how various types of geographic
features such as parking lots and commercial buildings a�ect air
quality and from what distance) representing mobile, stationary
and area natural and anthropogenic air pollution sources. �is
approach is particularly important for enabling the construction of
context-speci�c spatiotemporal models of air pollution, allowing
investigations of the impact of air pollution exposures on sensitive
populations such as children with asthma at scale.
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1 INTRODUCTION
Fine particulate ma�er (PM2.5) consists of particles less than 2.5
µm in aerodynamic diameter that once inhaled can penetrate the
respirable region of the lungs and contribute to respiratory and
cardiovascular disease. Typical primary sources of contributions
to �ne particulate ma�er include stationary and moving vehicle
exhausts, burning sources (e.g., wood-burning stoves and wild�res),
re�neries, and power plants. Secondary PM2.5 is also formed as a
result of photochemical reactions in the atmosphere in the pres-
ence of precursor gases and solar radiation. Epidemiological studies
have shown associations between exposure to PM2.5 and various
health conditions, including lung and respiratory disease [22], such
as asthma [5, 7]. In the 1993 landmark air pollution “Harvard Six
Cities Study” [4] and other recent studies [17], researchers reported
associations between the levels of exposure to �ne particulate con-
centrations and the risk of mortality and morbidity for cities all
over the world. As a result of this scienti�c evidence and several
other similar studies, many countries have set national ambient
mass-based air quality standards for PM2.5. In the United States,
the Environmental Protection Agency (US EPA) set PM2.5 stan-
dards and established the air quality index (AQI) to communicate
relative health risk levels of current pollution levels compared to
the standard, which is converted by PM2.5 concentration. �e US
AQI ranges from 0 to 500 and consists of six categories: “Good”,
“Moderate”, “Unhealthy for Sensitive Groups”, “Unhealthy”, “Very
Unhealthy”, and “Hazardous”. From an ambient pollutant concen-
tration value, one can calculate the corresponding AQI and its
health risk category for each type of regulated air pollutant. For
example, a 20 g/m3 PM2.5 measurement corresponds to an AQI
of 68 and is in the “Moderate” category, which means that “Air
quality is acceptable; however, for some pollutants there may be a
moderate health concern for a very small number of people who are



unusually sensitive to air pollution.” A 60 g/m3 PM2.5 measurement
corresponds to an AQI of 153 and is in the “Unhealthy” category.

In the US, the EPA’s ambient air monitoring network provides
hourly PM2.5 measurements at its regulatory air monitoring sta-
tions through the “Air �ality System” (AQS). �ese monitoring
stations are established for regulatory purposes with strict siting
criteria to capture regional and urban scale contributions to air
pollution levels within an area. �ese air monitoring stations also
exist in many other countries. Scientists and government agen-
cies use measurement data from these stations to build and val-
idate air quality models (AQMs) to explain and predict the past
and future air pollution levels for unmonitored locations (e.g.,
[1, 3, 13, 15, 16, 19, 20, 24, 25, 28, 29]). Predictions from these models
can then be used to study the associations between long-term air
pollution exposure and health impact at �ner spatial scales (than
simply using the monitored data) [26, 27].

One popular approach to predicting long-term spatial variations
in air pollution levels is land-use regression (LUR) (e.g., [2, 10, 14])
while more recent work uses machine learning techniques (e.g.,
[3, 12, 19, 21, 23]) and big data (e.g., [28, 29]). Existing air quality
models typically consider expert-selected (unique) characteristics
in a neighborhood including various types of geographical fea-
tures (e.g., elevation), proximity to roadways and tra�c conditions,
population density, and meteorological data. �e idea is that air
pollutants in “nearby” locations could be spatially auto-correlated
or demonstrate comparable concentrations at a given time. �is
is because geographically proximate locations are surrounded by
similar human-made and natural features (emissions and disper-
sion pa�erns), including mountains, oceans, roads, factories, and
various land-use types. However, building an air quality model
that produces accurate air quality concentration predicts at a �ne
spatiotemporal scale to capture the intra-city air pollution surface
is challenging because there are no universal means to de�ne and
quantify location neighborhood of highest in�uence on local air qual-
ity, especially across various cities and regions. Speci�cally, separate
models require expert-selected location characteristics before the
model ��ing process to achieve the best regression or machine
learning results. (e.g., distance to the ocean has a high correlation
to air quality in San Diego but not in every coastal city). �e impact
of each neighboring location characteristic on air quality can vary
signi�cantly across di�erent types air pollutants, time, and space.
Moreover, some of the data used in previous studies can be di�cult
or expensive to obtain and are not frequently available, such as
�ne-scale, and real-time meteorological data and tra�c volumes.
(See Section 5 for a review on related work)

�is paper presents a novel data mining approach that builds
an accurate PM2.5 model from publicly available geospatial data,
OpenStreetMap (OSM), without using expert knowledge in select-
ing air quality predictors. Our approach utilizes the PRISMS-DSCIC
infrastructure [18] as the data integration and analytics platform
to investigate the AQS data of PM2.5 concentrations and OSM data.
�e PRISMS-DSCIC (Pediatric Research using Integrated Sensor
Monitoring Systems - Data and So�ware Coordination and Inte-
gration Center) is an NIH-NIBIB (National Institutes of Health
- National Institute of Biomedical Imaging and Bioengineering)
funded initiative to address pediatric asthma as a chronic disease
of childhood. PRISMS-DSCIC is responsible for collecting, storing,

integrating, and analyzing real-time environmental, physiological
and behavioral data obtained from heterogeneous sensors and tra-
ditional data sources to help researchers to predict and prevent
asthma a�acks e�ciently. Using publicly available data that have a
global coverage with �ne details (in many countries), such as the
OSM data, has the advantage that the same approach can apply
to many areas across the globe without manual tuning to accom-
modate available datasets for every study area. Similarly, a recent
project using OSM data to generate pa�erns of human activities in
Vienna, Austria demonstrated promising results [11].

Our approach uses the AQS data from twelve SCAQMD (South
Coast Air�ality Management District) monitoring stations in the
Los Angeles Metropolitan Area (LAMA) and geographic data from
OSM to automatically build an air quality model. �e model demon-
strates on how di�erent types of OSM features impact PM2.5 AQIs
and fromwhat distance at a given time in LAMA. OSM contains mil-
lions of geographic features in LAMA, including points-of-interest,
land-use areas, water areas, and road networks (see Section 2). Our
algorithm �rst identi�es the air monitoring stations that have a sim-
ilar temporal pa�ern of PM2.5 AQIs on a temporal resolution. �en
using the temporal similarity, the algorithm trains a random forest
model to generate the “importance” of individual OSM features
(represented by points, lines, and polygons) together with their
geographic distances to the monitoring stations (from 100-meter to
3,000-meter radii). For example, suppose the stations that have a
similar temporal pa�ern of PM2.5 AQI all have a large factorywithin
1,000 meters but other stations do not, then the feature-distance
pair (factory, 1000-meter bu�er) could have a high importance on
predicting PM2.5 concentrations. We call the geographic character-
istics (e.g., factory within 1,000 meters) weighted by the importance
the “geo-context”. In short, the geo-context represents how each
type of OSM features impact PM2.5 AQIs in LAMA and from what
distance during the period when the AQI data are available.

To predict the PM2.5 concentration at a location, P, at a given
time, our algorithm �rst generates the geo-context of P and the
geo-context of all available monitor stations in the study area. �en
the algorithm trains a second random forest model using the geo-
context and the PM2.5 AQIs at available monitor stations to predict
the PM2.5 concentration at the location P.�is process works like a
recommendation system and helps reduce the prediction errors by
considering the temporal e�ect on the geo-context. For example,
a large university campus within 1,500 meters can have a high
impact on the PM2.5 concentration during rush hours but not at
night. �e result is an expert-free air quality model for intra-city
PM2.5 predictions. Our �ndings can be used to improve air quality
models that traditionally rely on geographically weighted interpo-
lations or regressions from (spatially) sparse monitoring stations
and can 1) highlight important features or nonlinear interactions
amongst them that might have been previously missed with more
traditional supervised approaches and 2) be incorporated into more
sophisticated prediction models to select and quantify important
geographic features related to air quality. �is �nding is partic-
ularly important in the study of air pollution and the impact on
relevant populations, such as children with asthma.

�e remainder of this paper is organized into four additional
sections. Section 2 presents an overview of the data source. Section
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3 describes our approach for modeling PM2.5 concentrations. Sec-
tion 4 presents an experiment and evaluation of the results. Finally,
Section 5 concludes the paper with a discussion of future work.

2 DATA SOURCES
AQS (Air�ality System) Data

Weuse theAQS data collected in PRISMS-DSCIC. PRISMS-DSCIC
queries the EPA’s AirNow web service every hour using multiple
zip codes to retrieve the AQS data. For every zip code, PRISMS-
DSCIC queries the AirNow service and stores the associated spa-
tiotemporal observations. �e observations contain two parts: the
environmental air quality indexes (AQI) and the pollution category
(Good, Moderate, Unhealthy for Sensitive Groups, Unhealthy, Very
Unhealthy, Hazardous) that each AQI measurement correspond.
�ere are twelve monitoring stations provide observations of PM2.5
AQI in the Los Angeles Metropolitan Area (Figure 1). In this paper,
our approach uses the PM2.5 AQI observations from 2016-10-30
12:00:00 to 2017-06-10 12:00:00 with one-hour intervals.

Figure 1: Monitoring Station Locations

Geographic Data
OpenStreetMap (OSM) is an open source, crowdsourced map,

which allows people to edit and access global geographic data freely.
OSM provides a variety of geographic data types with detailed
datasets coveringmany areas in the world. PRISMS-DSCIC contains
a copy of OSM data from Metro Extracts1 that covers the entire Los
Angeles County, including the locations of all the available PM2.5
monitoring stations. Example OSM data types (map or geographic
features) include land uses, roads, water areas, buildings, aero ways,
ocean, etc.2 OSM land-use polygons describe the primary use of
land by the human, such as industrial, residential, and commercial
use. OSM road lines include many types of roads, streets, or paths
such as motorways, living streets, and footways. OSM water areas
are bodies of water, such as lakes or ponds. OSM building types,
like point locations of apartments, factories, commercial structures,
could re�ect the population density and tra�c volumes in a local
1h�ps://mapzen.com/data/metro-extracts/
2h�p://wiki.openstreetmap.org/wiki/Map Features

area. OSM aero ways are linear features that represent the physical
infrastructure used to support aircra�, air travels, spacecra�, and
space �ights, which is a large air pollution source.

3 MODELING PM2.5 CONCENTRATION
Figure 2 shows our overall approach for building a PM2.5 con-
centration model from OSM and AQS data automatically. A�er a
preprocessing step for data cleaning (Section 3.1), our approach
groups available monitoring stations to identify similar tempo-
ral pa�erns on PM2.5 AQIs for di�erent time resolutions (hourly,
daily, monthly) using the K-means clustering (i.e., each station is a
point in the multidimensional space where each dimension is an
hour/day/month) (Section 3.2). Our approach uses the clustering
result in the next step to quantify the impact of a geographic feature
type to PM2.5 AQIs. �en the approach generates a “geographic
abstraction” for each monitoring station automatically (Section 3.3).
�e geographic abstraction is a summary of various geographic
features for the location using neighborhoods of various sizes. For
example, the geographic abstraction can contain the length of dif-
ferent road types (e.g., primary and secondary roads), the counts
of various location types (e.g., commercial and residential build-
ings), the area size of open spaces (e.g., parks and golf courses),
and hydrography (e.g., rivers and ocean) within neighborhoods of
100-meter to 3,000-meter radii. Next, the approach trains a random
forest model to quantify the importance of individual components
in the geographic abstraction based on their supports in grouping
monitoring stations of similar temporal pa�erns on PM2.5 AQIs
(Section 3.4). We call the geographic abstraction weighted by cal-
culated importance the “geo-context”. Finally, the approach uses
the geo-context to compute the similarity of the surrounding char-
acteristics for producing the PM2.5 concentration prediction for
locations that do not have monitoring stations (Section 3.5). �e
following subsections explain each step of our approach in details.

3.1 Data Preprocessing
In practice, data are generally incomplete (lacking values) and noisy
(containing outliers), especially for streaming data. �e AQS data
quality also su�ers from unknown measurement uncertainty and
exceptional events that might a�ect the measurement process. Miss-
ing values and errors can have a large impact on the performance
of analytic algorithms. �erefore, the �rst step of our approach
is data preprocessing including removing outliers and eliminating
missing values in the AQS data.

3.1.1 Removing Outliers. �ere are several ways to remove data
outliers such as computing a sliding window value, clustering to
detect and remove outliers, and applying regression analysis to
smooth the data. To handle streaming data with a temporal au-
tocorrelation, using a sliding window to �lter out noisy data is
e�ective. Our approach calculates the median of a six-hour sliding
window. For example, suppose we have a series of streaming PM2.5
AQIs with the interval of one hour, [· · · , 20, 30, 35, 3, 50, 60, 55,
· · · ], the sudden drop of AQI of 3 is considered as an outlier. By
applying a six-hour sliding window, we replace the sudden drop by
the median of the window [20, 30, 35, 3, 50, 60, 55], that is 35.

3



Figure 2: Overall approach for automatically building a
PM2.5 concentration model from OSM and AQS data

3.1.2 Eliminating Missing Values. �e simplest way to eliminat-
ing missing values is just ignoring the data tuple when the value
is missing. Imputation methods such as using the a�ribute mean
to �ll in the missing value or predicting for the missing ones by
machine learning algorithms can also achieve satisfactory results,
especially in building a recommendation system where lots of the
dependent values are not available. Our approach eliminates the
missing values by removing the timestamp that does not have a
value of PM2.5 AQI because �lling missing values would require an
accurate prediction of the temporal autocorrelation, which might
not be robust if the input data are not representative. In our case,
the timespan of our AQS data is less than one year.

3.2 Grouping Stations on PM2.5 AQIs
In this section, our goal is to identify monitoring stations that have
“similar” time-series PM2.5 AQIs. We use this information to gener-
ate the geo-context in a later step. We de�ne “similar” as in similar
temporal pa�ern on the PM2.5 AQIs.Here the temporal pa�ern is
the AQI pa�ern that occurs at a certain temporal scale, e.g., hourly,
daily, and monthly. Our algorithm clusters those monitoring sta-
tions with similar temporal pa�erns in the same group. For example,
urban areas would show a higher PM2.5 AQI during workdays than
rural areas, so urban areas could be grouped together in one cluster,
and rural areas are together in another.

Our approach uses K-means to cluster the available monitoring
stations based on the collected time-series PM2.5 AQIs. K-means

clustering is a common method to identify groups in the dataset,
with the number of groups represented by the input variable K.�e
algorithm works iteratively to assign each data point to one of the
K groups. �us, data points are clustered based on the similarity of
their feature vector in the Euclidean space.

We construct a feature vector for each monitoring station using
their time-series PM2.5 AQIs. Table 1 shows an example of 3-hour
PM2.5 AQIs for the monitoring station in Central LA CO. From the
example, our approach generates the feature vector as [50, 53, 55].
In our dataset, we have the AQS data covering 5,352 hours, so for
clustering hourly PM2.5 AQIs, each feature vector has a total of
5,352 components. In the 5,352-multidimensional space, we have
twelve points where each point corresponding to a monitor station.

K-means is a type of unsupervised learning technique, and we
need to de�ne the number of groups, K, beforehand. However, the
correct choice of K is o�en unknown in advance. Increasing K
without a penalty will always reduce the amount of error in the
resulting clustering, to the extreme case of zero errors if each data
point is a cluster (i.e., when K equals the number of data points).
In our approach, we use the elbow method to determine the value
of K. �e idea of the elbow method is to run K-means clustering
on the dataset for a range of values of K (e.g., K from 1 to 12 in our
experiment). For each value of K, we calculate the within set sum of
squared errors (WSSSE), which is the sum of the distances between
each point and centroid in each K partition. �en we plot a line
chart of the WSSSE for each K value. �e line chart would look
like an arm, and the “elbow” of the arm is the best choice of K. For
example, Figure 3 shows that when K equals to 8, the trend becomes
slow. �erefore, we choose K equals to 8 as the number of clusters.
Figure 4 shows the clustering result of twelve locations using hourly
AQIs. We can �nd that all the coastal areas are grouping together
while Central LA is itself in a group because it has a very di�erent
temporal pa�erns of the PM2.5 AQI. A�er determining the best K,
our approach uses the K-means results of the identi�ed best K to
label the monitoring stations. For example, two monitoring stations
that in the same cluster will have the same group label. In the next
step, our approach uses the group label of each monitoring station
to quantify how each OSM feature supports the clustering result.

Table 1: Example for 3-hour PM2.5 AQI in Central LA CO

Monitoring Station Timestamp PM2.5 AQI
Central LA CO 2017-03-04 12:00:00 50
Central LA CO 2017-03-04 13:00:00 53
Central LA CO 2017-03-04 14:00:00 55

3.3 Generating Geographic Abstraction
PM2.5 concentrations are in�uenced by its surrounding geographic
features [2]. In this section, our approach computes a geographic
abstraction to describe the surrounding environment for a location.
We use the available geographic data from OpenStreetMap, which
includes land use, roads, buildings, water ways, aero ways, ocean,
etc. For each monitoring station, we construct a series of concentric
circles (bu�ers) with radii from 100 meters to 3,000 meters with
interval of 100 meters.
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Figure 3: �e elbow point for choosing the best K

Figure 4: Clustering result of twelve monitoring stations

Length of Line Features
Our approach computes the sum of lengths of di�erent feature

types to create a geographic abstraction for line geographic features
from OSM, e.g., roads and aero ways. Figure 5 shows an example of
roads around the monitoring station A with the 100-meter and 200-
meter bu�ers. In the example, there is a total of three roads of two
types, the pedestrian and motorway roads. (Both “Pedestrian” and
“Motorway” are OSM feature types.) For each type, we sum up the
length of road segments within the bu�er. As Figure 5 shows, within
the 100-meter bu�er, the monitoring station A contains 23-meter
(m) Pedestrian and 30m Motorway. Within the 200-meter bu�er,

it has 43m Pedestrian and 200m Motorway. �us, our approach
generates the components for the geographic abstraction vector
for the station A as:

[23, 30, 43, 200]
Each component represents an abstraction of a unique geo-

graphic feature type within a speci�c distance to the monitoring
station. �e example contributes four components to the abstrac-
tion vector: the “Pedestrian” road length in the 100-meter bu�er,
the “Motorway” length in the 100-meter bu�er, the “Pedestrian”
road length in the 200-meter bu�er, and the “Motorway” length in
the 200-meter bu�er. Our approach iterates through all available
line OSM features to generate an abstraction for every feature type
for each bu�er size.

Figure 5: Example for roads in the 100-meter and 200-meter
bu�ers

Area of Polygon Geographic Features
For polygon geographic features such as land uses and water

areas, our approach computes the sum of the overlapping areas
between each type of the features and the bu�ers. Figure 6 shows
an example of the land use around the monitoring station A within
the 100-meter and 200-meter bu�ers. In this example, there is a
total of four area features of two land-use types, park and industrial
land-use. (Both “Park” and “Industrial” are OSM feature types.) For
each type, our approach calculates the sum of the overlapping areas
of the feature type and the bu�ers (i.e., we only compute the area
located within the bu�er). As in Figure 6, for the 100-meter bu�er,
the station A contains 500-square-meter (m2) of park areas. For the
200-meter bu�er, it has 950m2 park areas and 740m2 industrial areas.
�us, our approach generates the components for the geographic
abstraction vector for the station A as:

[500, 0, 950, 740]
�e example contributes four components to the abstraction

vector: “Park” areas in the 100m bu�er, “Industrial” areas in the
100m bu�er, “Park” areas in the 200m bu�er, and “Industrial” area
in the 200m bu�er. Our approach iterates through all available
polygon OSM features to generate an abstraction for every feature
type for each bu�er size.
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Figure 6: Example for land use in the 100-meter and 200-
meter bu�ers

Count for Point Features
Our approach computes the count of individual types of point

features (e.g., building types) to represent the geographic abstrac-
tion for point OSM features. �e number of buildings in an area
could re�ect population density and tra�c pa�erns. Figure 7 shows
an example of some buildings around the monitoring station A
within the 100-meter and 200-meter bu�ers. In the example, there
is a total of twelve buildings of two building types, apartment and
factory buildings. (Both “Apartment” and “Factory” are OSM fea-
ture types.) In this example, there are two apartments within the
100-meter bu�er and eight apartments and three factories within
the 200-meter bu�er. �us, our approach generates the components
for the geographic abstraction vector for the station A as:

[2, 0, 8, 3]
�e example contributes four components to the abstraction

vector: “Apartment” counts in the 100m bu�er, “Factory” counts
in the 100m bu�er, “Apartment” counts in the 200m bu�er, and
“Factory” counts in the 200m bu�er. Our approach iterates through
all available point OSM features to generate an abstraction for every
feature type for each bu�er size.

Distance to Ocean
�e geographic abstraction vector also includes a component of

the geographic distance from a location to the ocean. For example,
suppose the distance from the monitoring station A to ocean is
4000m, the approach generates a feature vector component as:

[4000]

Generating Vector as Geographic Abstraction
Our approach generates a vector as geographic abstraction for

each location. For example, to construct a geographic abstraction
vector for the monitoring station A, we combine all the components
mentioned above to form a new vector as,

[23, 30, 43, 200, 500, 0, 950, 740, 2, 0 , 8, 3, 4000]
Each column of the vector represents the value of a unique

geographic feature type with a speci�c bu�er size. Our approach

creates bu�ers from 100 meters to 3,000 meters with an interval of
100 meters. �ere are more than 3,500 columns in each geographic
abstraction vector. Our approach generates the vector for each
monitoring station and together the vectors constitute a matrix
(Figure 8). In the next step, our approach quanti�es the importance
of individual components in the geographic abstraction vectors
(column in the matrix).

Figure 7: Example for buildings in the 100-meter and 200-
meter bu�ers

Figure 8: Geographic abstraction matrix

3.4 Computing Geo-Context
3.4.1 Computing Geographic Importance. In many cases, build-

ing an air quality model requires air quality experts to decide which
geographic types and what bu�er sizes should be considered in
the modeling process. However, this process is expensive and time
consuming. In this section, we present a method to automatically
identify which geographic types with what bu�er size have the
most impact on PM2.5 concentration.

Our approach uses the random forest technique to quantify the
importance of individual components in the geographic abstraction
vector. Random forest is an ensemble learning method for classi�ca-
tion and regression, which consist of multiple single-decision-trees.
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When classifying a new object, each tree gives a classi�cation (i.e.,
the tree “votes” for that class). A random forests classi�er chooses
the classi�cation that has the most votes. It also provides an easy
way to assess feature importance for classi�cation or regression
tasks. Our approach uses the grouped monitoring stations as the
label (the dependent variable) and their geographic abstractions
as the predictor features to train a random forest model. We use
the random forest implementation provided in Spark MLlib to de-
rive the feature importance for each component in the geographic
abstraction. �e idea is that the feature components with higher
importance indicate higher impact on the clustering result (based
on the PM2.5 AQI temporal pa�erns of the monitoring stations
used in the K-means process). �e features with zero importance
means that they are not important at all in classifying the PM2.5
AQI temporal pa�erns.

3.4.2 Constructing Geo-Context. �e feature importance helps
us identify which types and what bu�er size ma�ers in predicting
PM2.5 AQI. For each component in the geographic abstraction, we
multiply its value by its importance. In this way, we can reward
those important features and penalize unimportant ones. For in-
stance, suppose there is a large university area (e.g., 3000m2) in
a 100-meter bu�er, but it has zero importance (i.e., it has no rela-
tionship with the similarity of PM2.5 AQI at di�erent locations),
we eliminate its value as it does not exist. We call this weighted
geographic abstraction the “geo-context”. �e geo-context replaces
the original geographic abstraction and become a description of the
geographic environment around a location for predicting PM2.5
concentration.

3.5 Predicting PM2.5 Concentration
To predict PM2.5 concatenation at a certain time for a target location
that does not have air quality sensor, our approach trains a second
random forest model with the geo-context (as the predictors) and
the PM2.5 AQI (as the dependent variable) at that time from all
available monitoring stations. �en we construct the geographic
abstraction (Section 3.2) for the location and compute the geo-
context by applying the feature importance (Section 3.3). Next, we
use the trained random forest model to predict the PM2.5 AQI for
the targeting location and �nally convert the predicted PM2.5 AQI
into PM2.5 concentration.

4 EXPERIMENT
We utilized the AQS data (AirNow) and OpenStreetMap data col-
lected in PRISMS-DSCIC for the experiment. We conducted the
experiment using the Apache Hue interface, which operates on an
interactive session with the Spark cluster on PRISMS-DSCIC. All
geospatial computing was done in PostGIS and statistical analysis
was done in Scala, version 2.11.8 and Spark MLlib, version 2.1.0.

We performed data preprocessing on the AQS data including
removing outliers, eliminating missing values, and aggregating data
to lower temporal resolutions (from hourly to daily and monthly).
�e timespan is seven entire months, 233 days, and 5,352 hours.
Figure 9 shows an example result before (a) and a�er (b) removing
outliers using a sliding window of six hours. Our approach also re-
moved the timestamp that did not contain PM2.5 AQIs. To conduct
our experiment for di�erent temporal resolutions, we computed

the mean for daily and monthly PM2.5 AQIs for each monitoring
station to generate the daily and monthly data.

4.1 Experimental Settings
In the experiment, we tested the performance of both the geo-
graphic abstraction and geo-context for generating hourly, daily,
and monthly predictions of PM2.5 in Los Angeles Metropolitan
Area. We veri�ed our results using leave-one-out cross-validation
and compared our results with the inverse-distance weighing (IDW)
method. We started by taking one monitoring station out (i.e., the
target station) and using the remaining 11 stations to predict PM2.5
concentration at the hourly, daily, and monthly temporal resolution.
We then used the le�-out station as the ground truth to calculate
the prediction accuracy.

(a)

(b)

Figure 9: Example result of removing outlier before (a) and
a�er (b) for Monitoring Station in Central LA

4.2 Experimental Results and Discussion
We compared the result of our approach (both geographic abstrac-
tion and geo-context) to IDW on the same dataset. IDW (Inverse
Distance Weighting) is the most frequently used deterministic mod-
els in spatial interpolation. We evaluated the performance using
RMSE and MAE. RMSE (Root-mean-square deviation) measures the
di�erences between values predicted by a model and the actual val-
ues. MAE (Mean absolute error) measures the absolute di�erence
between two continuous variables. We tested on seven months
with monthly data, 233 days with daily data, and 168 hours (one
day, including 24 hours, randomly chosen from every month) with
hourly data. We computed the overall RMSE and MAE for all target
locations (twelve monitoring stations). Table 2 presents the eval-
uation result for month, daily, and hourly, respectively. Figure 10
shows the monthly prediction error for all monitoring stations us-
ing three methods. Our approach achieves the best performance
with the smallest errors.

Our approach using either geo-context or geographic abstraction
generated competitive low RMSE and MAE as other expert-curated
models (See Section 5). Using geo-context generated more accurate
results from using the geographic abstraction, and both methods
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were comparable to IDW while IDW cannot provide �ne-scale
predictions (see next paragraph). We also performed the paired
t-test and found that the geo-context MAE results and IDW are
statistically di�erent with 95% con�dence. For hourly, daily, and
monthly predictions, the t-test results were p = 1.73212E-15, p =
1.31243E-05, and p = 0.002, respectively.

Table 2: Result for prediction evaluation

Geo-Context Geo-Abstraction IDW
RMSE (Monthly) 2.53984 2.62391 2.88263
MAE (Monthly) 1.86657 1.93673 2.18675
RMSE (Daily) 4.33786 4.35857 4.10172
MAE (Daily) 3.26140 3.28176 3.10185

RMSE (Hourly) 7.38823 7.59260 6.66106
MAE (Hourly) 5.06559 5.12406 4.54779

To demonstrate our results in predicting �ne scale predictions
of PM2.5 concentration, we created a 1-mile apart �shnet covering
most of the City of Los Angeles (604 points). We used our approach
to predict the PM2.5 AQImonthlymean for each point on the �shnet.
Our approach generated a list of feature importance based on the
monitoring stations. Table 3 shows the top 15 features ranked by
importance. “Motorway”, “primary”, and “tertiary” are roads that
re�ect tra�c volume. “Village green”, “farmland”, and “pitch” are
open spaces of green area. “University”, “residential”, and “retail”
are the places a�ract tra�c and people. “Wetland”, and “industrial”,
“garages” are the sources of water pollutants and air pollutants.
�e results demonstrate that the identi�ed feature types with high
importance using the geo-context are similar to other studies in
analyzing PM2.5 concentration (See Section 5). By automatically
quantifying the importance of individual geographic feature types,
we could easily explain those geographic feature types a�ect PM2.5
concentrations and from what distance. Figure 11 shows the PM2.5
AQI predictions of our approach and IDW for Dec. 2016 (a) and
Jan. 2017 (b). As expected, IDW could not generate �ne-scale
predictions while our approach successfully identi�ed intra-city
areas where the air quality is typically poor (e.g., the south part of
the city near the port of San Pedro and downtown Los Angeles).

5 RELATEDWORK
�ere exists an abundant literature on air quality modeling and
prediction. (�e reader is referred to [10] for a review on land-use
regression (LUR) methods and [26, 27] for comprehensive reviews
on air quality predictions using various methods). �e basic and the
least computationally expensive methods use spatial interpolations,
such as inverse distance weighting (IDW) and Kriging. �e methods
do not explicitly consider neighborhood characteristics and cannot
generate results at a �ne-scale with sparse monitoring stations.

Sophisticated and more accurate air quality modeling and pre-
diction methods typically include two steps. First, a domain expert
uses knowledge in previous studies on air quality models (AQMs)
and statistical methods to test and select the independent variables
(predictors). �is variable selection step includes choosing a predic-
tor type (e.g., the length of the primary roads and regional average
humidity) and a spatial distance. �is step largely depends on the

Figure 10: Prediction errors for all monitoring stations

availability of a dataset and previous studies of similar pollutants.
For example, some studies used crowdsourced data [8] or area spe-
ci�c data (e.g., dense sensors on public transport vehicles [9]) that
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Table 3: Example for feature importance

Geo Name Bu�er Size (meter) Geo type Importance (%)
land use 1100 wetland 0.0051177
land use 1300 uni�ersit� 0.004450
road 600 rail 0.0044327

land use 1200 �illa�e �reen 0.0037241
road 700 primar� 0.0035520

land use 1900 f armland 0.0031458
land use 2700 �illa�e �reen 0.0030063
road 800 residential 0.0028980

buildin� 2000 retail 0.0027980
buildin� 900 industrial 0.0027576
road 500 tertiar� 0.0027357

land use 900 pitch 0.0026613
buildin� 2900 school 0.0025681
buildin� 1700 �ara�es 0.0025361
road 1300 motorwa� 0.0023724

are not available elsewhere. If a dependent variable is not available
for a study area, a common approach is to compute surrogate vari-
ables. For example, if tra�c dynamics are not available, the domain
expert would use remotely sensed data or available road data as
the surrogate [10]. �is step needs to repeat for each study areas
and pollutant types [10].

Once the predictor variables are chosen, the second step is to
build the prediction models. �e mainstream methods include the
classical dispersion models, LUR models, and more recently ma-
chine learning and data mining models. Dispersion models o�en
require very detailed data (e.g., building heights and distances be-
tween neighboring buildings) and area speci�c parameters [26],
which is di�cult to generalize and transferred to other locations.
Also, dispersion models are usually computationally expensive. In
comparison, LUR models have advantages that 1) the results are
human-explainable and 2) they have less computational require-
ment (than dispersion models and machine learning methods).

Since the �rst LUR study on air pollution modeling in 1997 [2],
many LUR models and features are used to study air pollution mod-
eling and predictions (e.g., [10, 14]). However, they heavily rely on
expert-selected predictors including predictor types and their �nite
spatial radii, and every study area requires a domain expert to select
and �ne-tune the variables. For example, the same radius selected
for transportation features in one area might mean something else
in another. (Road density within 500 meters in Los Angeles likely
captures very di�erent processes than the same variable in rural
Montana.) �e result is that LUR models in the literature demon-
strated signi�cantly di�erent error ranges in their predicts (see
[10, 26, 27]). For example, Liu et al. [13] reported high R2 for their
NO and PM2.5 LUR models for Shanghai, China, but their RMSE
for the 35 veri�ed locations was 194.59 (g/m3). In Hoek et al. [26],
their RMSE ranged from 1.6 to 9.8 (g/m3) for various types of air
pollutants in study areas across the globe, and their temporal reso-
lutions are commonly low (e.g., seasons). Moreover, LUR models
rarely deal with spatial e�ects (e.g., spatial non-stationarity) except
a more recent study that built a wind model to improve traditional
LUR and had a 10-20% improvement on the prediction [1].

(a) Dec. 2016

(b) Jan. 2017

Figure 11: PM2.5 AQIs prediction for Dec. 2016 (a) and Jan.
2017 (b) using geo-context (le�) and IDW (right)

With more datasets and so�ware tools becoming available, many
studies start to adopt machine learning techniques for building air
quality models or predictors [3, 19, 21, 23, 28, 29]. �e advantage
of using machine learning techniques include 1) the capability to
handle large volumes and varieties of data types and formats (e.g.,
categorical and numerical data), 2) having more accurate prediction
results because machine learning methods are less in�uenced by
the choice of parameters or speci�c dataset (e.g., see [3] for a com-
parison of LUR and Random Forest), and 3) requiring less expert
e�orts in selecting input features. Among others, a notable work is
the Microso� Urban Air system [28, 29] that generates air quality
predictions covering large areas. While these machine learning
methods could achieve more accurate results than the popular LUR
models, the price to pay is that the machine learning models are
o�en not easily translatable to policy makers or urban planners
(e.g., prediction results from multiple machine learning models).
Also, many of the existing studies tested with region speci�c data
sets that are di�cult to obtain.

In comparison, our approach is similar to LUR models in that
the results are explainable (i.e., the geo-context), but our approach
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does not require expert-selected predictors. Contrast to dispersion
models and the advanced machine learning models (e.g., [28, 29]),
our approach is less computationally expensive but generate less
accurate results because of the limitation in our predictors. For
example, using a static geographic data source, currently our model
captures spatial variability but not temporal variability, and future
extensions of this work will aim to incorporate meteorology to
capture temporality be�er. More types of globally available data
such as the WorldClim (global climate data with 1 km2 resolution)
and satellite imagery could be helpful in improving prediction
results of our approach in the future. In sum, the previous studies
typically rely on expert-selected and regional available predictors,
and our approach is expert-free and can generate an accurate model
for predicting intra-city PM2.5 concentrations from OSM data.

6 DISCUSSIONS AND FUTUREWORK
�is paper presented a data mining approach to build an accurate
model to predict PM2.5 concentration by automatically selecting im-
portant geographic features without using expert knowledge. �e
advantages of our approach include 1) it can quantify the in�uence
of geographic features on air quality, which helps us do geographic
feature selection for air quality analysis without using the domain
knowledge; 2) we use the easily accessible OpenStreetMap to con-
struct geographic abstraction instead of using data that is expensive
and di�cult to obtain; 3) the model performed well in predicting
PM2.5 concentration and could generate �ne-scale predictions. We
plan to improve the work presented in this paper in several ways.
First, we are going to test our approach with the Esri StreetMap
Premium dataset for the same study area, since the data quality
of OpenStreetMap cannot be assured [6]. �en we will be able to
compare the prediction results from using both the Esri and OSM
datasets and learn how data quality a�ects the air quality model
built with our approach. We also plan to compare the work in this
paper with our most recent work that uses expert-selected features
for air quality modeling [12]. Second, we plan to test the approach
for other cities (e.g., Salt Lake City). �ird, we plan to incorporate
other time-series data, such as weather information to tackle the
challenges in modeling spatial e�ects.
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