
A

Q2P: Discovering Query Templates via Autocompletion

WENSHENG WU, University of Southern California, USA

WEIYI MENG, State University of New York at Binghamton, USA

WEIFENG SU, BNU-HKBU United International College, China

GUANGYOU ZHOU, Central China Normal University, China

YAO-YI CHIANG, University of Southern California, USA

We present Q2P, a system that discovers query templates from search engines via their query autocomple-
tion services. Q2P is distinct from the existing works in that it does not rely on query logs of search engines
that are typically not readily available. Q2P is also unique in that it uses a trie to economically store queries
sampled from a search engine and employs a beam-search strategy that focuses the expansion of the trie on
its most promising nodes. Furthermore, Q2P leverages the trie-based storage of query sample to discover
query templates using only two passes over the trie. Q2P is a key part of our ongoing project Deep2Q on a
template-driven data integration on the Deep Web, where the templates learned by Q2P are used to guide
the integration process in Deep2Q. Experimental results on four major search engines indicate that (1) Q2P
sends only a moderate number of queries (ranging from 597 to 1135) to the engines, while obtaining a sig-
nificant number of completions per query (ranging from 4.2 to 8.5 on the average); (2) a significant number
of templates (ranging from 8 to 32 when the minimum support for frequent templates is set to 1%) may be
discovered from the samples.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval

General Terms: Design, Languages, Algorithms, Experimentation

Additional Key Words and Phrases: Query templates; search engines; autocompletion; trie; pattern discovery

ACM Reference Format:

Wensheng Wu, Weiyi Meng, Weifeng Su, Guangyou Zhou, and Yao-Yi Chiang, 2015. Q2P: Discovering Query
Templates via Autocompletion ACM Trans. Web V, N, Article A (January YYYY), 29 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

We consider the problem of discovering templates for the queries that users pose on
search engines. Here we use search engines to refer to any databases or data sources
on the Web that accept keyword queries, e.g., Google and Amazon. Query templates are
parameterized queries that capture the common patterns of user queries. For example,
jobs in [location] is a template with a parameter location. The template represents a set
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of user queries that start with “jobs in” followed by a desired location for the jobs.
Example instances of this template are “jobs in Chicago” and “jobs in New York”.

Knowing query patterns and templates not only helps search engine understand
user query interests and improve its search algorithms to better answer common
queries, but also becomes increasingly critical to many middleware applications. These
applications often require the knowledge of queries and patterns of queries that users
frequently pose on the underlying search engines, in order to better serve the users of
the applications.

An important class of such middleware applications are Web data integration sys-
tems [Wu 2013b]. A data integration system provides uniform access to a set of data
sources in a domain of interest, thereby making the access to individual data sources
transparent to the users. In this article, we focus on the integration systems that ac-
cept keyword queries. There are now many such systems available on the Web. For
examples, AddAll1 allows users to search and compare books in over 40 bookstores
by posing queries on a global query interface; NCBI (National Center for Biotechnol-
ogy Information)2 permits a unified keyword search over about 50 databases on DNA
sequences, biomedical literature, and epigenomics; and Dogpile3 is a metasearch en-
gine that simultaneously finds search results from multiple search engines, including
Google, Yahoo!, and Bing.

As we will further discuss in Section 4, a traditional data integration system of-
ten suffers from slow query response since the system needs to determine on the fly
which sources can answer the query, and fetch and merge the results from different
sources. The problem is exacerbated when there are a large number of data sources to
be integrated. To address this challenge, recently we proposed a novel template-driven
data integration system Deep2Q [Wu 2013b] that uses templates to represent common
query interests and plans ahead offline on how to answer the queries in the templates.
For popular queries, the system may also cache their results for fast query response.

Thus, a key problem in building Deep2Q is to discover the templates that capture
the queries commonly asked by users. An attractive solution to this problem is to learn
such templates from the underlying data sources or search engines. Towards this goal,
there have been some works on discovering query patterns from query logs of search
engines, e.g., [Pandey and Punera 2012; Agarwal et al. 2010].

These works are typically limited to analyzing query logs of major search engines
such as Google, Yahoo!, and Bing. They are either conducted by search engines them-
selves or through the collaboration with the search engines. However, in general,
search engines, in particular those for e-commerce web sites, e.g., Amazon and Barnes
& Noble, tend to treat their query logs as valuable business assets that contain sensi-
tive user information, and thus are not willing to disclose them to the public.

In this article, we consider the problem of discovering query templates without re-
lying on query logs of search engines. Instead, we leverage the query autocompletion
features, which have become prevalent among search engines, to discover the pat-
terns of the queries posed by the users. Specifically, query autocompletion is a service
provided by a search engine that automatically suggests completions to the (partial)
queries while users are typing. Search engines typically recommend the completions
based on their popularity, i.e., how many times the completed queries have been en-
tered by other users before. Query autocompletion has been very effective in saving
user efforts in typing queries and reducing mistakes in query entries.

1http://www.addall.com/
2http://www.ncbi.nlm.nih.gov/
3http://www.dogpile.com/
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Fig. 1. Yahoo! completions for “jobs in” Fig. 2. Yahoo! completions for “jobs”

To further illustrate query autocompletion, Figure 1 shows the query autocompletion
service from Yahoo!. It displays a list of possible completions such as “jobs in Dubai”
for the partial query “jobs in”. Each completion typically corresponds to a query that
(other) users have entered before.

As the example shows, the queries suggested by search engines are good resources
for learning query templates. For example, if the template (e.g., jobs in [location]) starts
with an entity name (e.g., “jobs”) followed by a preposition (“in”), then the completions
given by search engines will very likely contain the instances of the parameter after
the preposition (e.g., locations such as “Dubai” and “Maine”). Furthermore, if there
are a large number of queries that follow the template, then it is very likely that the
preposition (e.g., “in”) will be among the top completions given by search engines for
the partial query that contains only the entity name (e.g., “jobs”). For example, five of
the 10 completions given by Yahoo! for “jobs” (Figure 2) start with “in”.

There are two key challenges to be addressed when leveraging the above observa-
tions to discover query templates and instances.

— How to obtain a good sample of queries that can reveal query patterns, while not
overwhelming search engines with sampling queries?

— How to efficiently discover query patterns from the sample that may contain a large
number of queries?

In this article, we present Q2P, a system that discovers query templates of search
engines via query autocompletion that addresses the above challenges. To address the
first challenge, Q2P incorporates a novel query sampler that incrementally grows the
length of sampled queries and uses a beam-search strategy to focus the growth and re-
duce the cost of sampling. The sampler utilizes a trie (i.e., prefix tree) to store sampled
queries efficiently and help identify queries for further expansion.

To address the second challenge, Q2P implements a novel algorithm that leverages
the structure of query trie to efficiently discover query patterns. The algorithm only
requires two passes over the trie. In the first pass, it discovers frequent nodes in the
trie. These nodes are then used in the second pass to induce query patterns.

The problem of discovering search engine queries via their autocompletion services
has started to receive active attentions in the past few years. The work closest to us is
[Bar-Yossef and Gurevich 2008]. However, the goal of [Bar-Yossef and Gurevich 2008]
is to obtain a random sample of queries from a search engine, which can then be posed
to the search engine and obtain a sample of its content. In contrast, we aim to dis-
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cover a focused set of queries that center around an entity, so that we can learn query
templates about the entity.

To the best of our knowledge, this is the first work on a focused sampling of search
engine queries using query autocompletion. Our solution is also unique in its use of
trie-based representations of queries for pattern discovery.

The rest of the article is organized as follows. Section 2 defines the template dis-
covery problem. Section 3 presents the architecture of Q2P and describes in detail its
beam-search query sampler and trie-based template miner. Section 4 describes the
template-driven data integration system Deep2Q and discusses how to integrate Q2P
into Deep2Q. Section 5 presents our experimental results. Section 6 discusses related
work. The article is concluded in Section 7.

2. PROBLEM DEFINITION

In this section, we first define the template discovery problem and then give an
overview of the Q2P’s solution. We will describe the internals of Q2P in Section 3.
We will focus on discovering noun phrase query templates as defined below.

Definition 2.1 (Noun phrase query templates). A noun phrase query consists of
three parts: <M, N, O>, where N is a head noun (e.g., “books”) that represents an en-
tity of interest; M and O are a set of pre-modifiers (e.g., “new”) and post-modifiers (e.g.,
“for teenagers”) of N respectively. A query template or pattern is then a parameterized
noun phrase query whose parameters represent attributes of entities in a domain of
interest. We sometimes call the words or phrases that “introduce” the parameters in
the template “cue words” or “cue phrases”.

For example, books about [subject] is a noun phrase template with a parameter sub-
ject, and a noun phrase query “books about history” is an instance of this template.
Furthermore, “about” is a prepositional cue word that introduces the value of the pa-
rameter, i.e., “history”.

We use RESTful web service of search engine to automatically obtain query comple-
tions (see also Section 5). Through the web service, a partial query may be specified
as the value for a designated parameter in the request URL for the service and search
engine will return more complete queries that expand the partial query, e.g., by adding
more words at the end of the partial query. For example, a possible completion to “books
in” may be “books in spanish”.

Note that through its query interface, search engine may provide more complex com-
pletions than those available through the web service. For example, it may detect that
user has moved the cursor to the beginning or middle of partial query and suggest
completions that expand the partial query at the cursor location. For example, sup-
pose that user first enters “books” and then adds a letter ‘n’ before “books”, search
engine may suggest completions such as “new books”. However, it is difficult to obtain
such completions through web services.

In this article, we will focus on discovering single-parameter noun phrase templates
that do not have pre-modifiers, i.e., template that starts with a head noun (entity
name) followed by a list of post-modifiers, one of which represents the parameter in
the template. Examples of such templates are: jobs in [location] and books for kids under
[age]. We pose partial queries that start with the head nouns, e.g., “jobs” and “books”
through web service of search engine, obtain query completions, and discover patterns
and templates based on the completions.

Note that it is possible that a search engine may sometimes return completions with
additional words that do not appear in the original partial queries. For example, a
search engine may complete “jobs in” into “IT jobs in Chicago”. While such completions
may also be useful for discovering templates, they are discarded in the experiments
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Search engine Query sampler Template miner 

Partial queries 

Query completions 

Query tries 

Query templates 

Fig. 3. The Q2P architecture

reported in this article, since our goal is to find sample queries that all start with the
same head noun, e.g., “jobs”, as discussed above.

Since our goal is to discover query templates that can capture common patterns of
user queries, we introduce a concept of frequent template, similar to frequent itemset
in association rule mining [Agrawal and Srikant 1995], to quantify the usefulness of
templates.

Definition 2.2 (Template support and frequent templates). Given a set of queries T
and a template p, the support count (or support) of p with respect to T is the number
(or fraction) of queries in T that follow the template p. A query q follows a template p
if q can be obtained by instantiating the parameter(s) in p. A template p is frequent if
its support (or support count) ≥ σ, a threshold for the minimum support (or support
count).

Based on the above definitions, we now define our problem as follows.

Template discovery problem: Given a set of queries T from a search engine and a
threshold σ for the minimum support count, discover from T a set of frequent noun
phrase templates such that the instances of each template start with the same head
noun.

3. THE Q2P SOLUTION

Figure 3 shows the architecture of Q2P that solves the template discovery problem as
defined in Section 2. Q2P consists of three major components: search engine, query
sampler, and template miner. As described in Section 2, we assume that search en-
gine provides a RESTful web service for query autocompletion, which is now commonly
available among search engines. Using the service, the query sampler repeatedly sends
partial queries to the engine and obtains completions suggested by the engine. As mo-
tivated in Section 1, the key challenge to query sampler is how to obtain a good sample
of queries that may reveal user query patterns without sending too many queries to
the engine. In Q2P, this is accomplished by using a trie to economically store the sam-
pled queries and employing a beam-search strategy to limit the amount of expansion
on the queries in the trie.

After the query sampler obtains a sample of queries, the queries are then given
to the template miner, stored in a trie. The template miner takes the advantage of
the trie-based representation of queries and efficiently discovers query templates and
instances via only two traversals over the trie.

In the rest of this section, we describe in great detail the beam-search query sampler
(Section 3.1) and the trie-based template miner (Section 3.2).

3.1. The beam-search query sampler

Algorithm 1 shows the algorithm BEAMSAMPLER which implements the beam-search
query sampler. As described earlier, BEAMSAMPLER uses a trie to economically store
the sampled queries and direct the sampler to perform a focused search controlled by a
beam. It takes as the input: (1) a search engine S that provides query autocompletion
service; (2) seed, a noun or noun phrase in the plural form that represents the type of
entities of interest, e.g., to discover templates of queries searching for books, we may
set seed = “books”; (3) k, the desired beam size; (4) τ , a threshold that determines if
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ALGORITHM 1: BEAMSAMPLER(S, seed, k, τ , γ): The beam-search query sampler

Input: S, a search engine with query autocompletion;
seed, noun (phrase) representing an entity type;
k, beam size;
τ , probing threshold;
γ, yield-ratio threshold

Output: T , a trie of queries sampled from S using seed
1. /* Initialization */

(1) Create a stub trie T with seed as the root;
(2) Current level l← 1;
(3) Current beam B ← {root};

repeat
2. /* Expansion */
foreach node n in B do

(1) Ask S to complete n’s prefix query, denoted as PrefixQuery(n);
(2) if # of completions < τ then

Add completions to T ;
Mark n as unexpandable;

(3) else
(a) if there are completions starting with a letter then

Ask S to complete “PrefixQuery(n) [a-z]”;
(b) if there are completions starting with a digit then

Ask S to complete “PrefixQuery(n) [0-9]”;
(c) if there are completions starting with a special character c then

Ask S to complete “PrefixQuery(n) c”;
(d) Add completions to T ;
(e) if yield ratio of n < γ then

Mark n as unexpandable;
end
3. /* Beam construction */

(1) l ← l + 1;
(2) Evaluate the utility f(n) for each expandable node n at level l;
(3) Sort the nodes by their utility into an array N ;
(4) B ← N [0 : k − 1], i.e., the top-k nodes with the largest utilities;

until no expandable nodes found at the level l;
return T

it is necessary to expand a node in the trie; and (5) γ, a threshold on the yield-ratio
(defined below) that determines the expandability of a node (defined below too). The
algorithm outputs a trie with queries sampled from S.

Definition 3.1 (Yield ratio). Consider a search engine S and a node n in a trie T .
Suppose the sampler obtains x number of completions from S by issuing y number
of queries while it tries to expand n. Then the yield ratio of this expansion effort is
x/y. Note that a node with a large yield ratio likely represents a cue word in a query
template.

Definition 3.2 (Expandable node). A node n in a trie T is not expandable if (1) none
of its ancestors is expandable or (2) its yield ratio is less than a threshold γ. Otherwise,
n is expandable.

Algorithm: The algorithm consists of three major steps: (1) initialization; (2) expan-
sion; and (3) beam construction.

(1) Initialization: This step sets up an initial trie T that contains only a root node
storing the given seed. It then sets the current level l to 1, and the current beam B to
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contain only the root of T . Note that B always stores the nodes selected for (possible)
expansion at the current level l.

After the initialization, the algorithm then repeats step 2 (expand the nodes in the
beam) and step 3 (form a new beam for the next level) until no more expandable nodes
can be found. We now describe these two steps.

(2) Expansion: This step considers each node in the beam in turn. For each node n, the
algorithm first determines if n is expandable. For this, it asks the engine S to complete
the prefix query (formally defined below) for n, denoted as PrefixQuery(n) or simply
as p (step 2.1). For example, suppose the root contains “books” and it has a child “for”,
then the prefix query for “for” will be “books for”.

If the number of completions for p is less than a threshold τ , BEAMSAMPLER simply
adds the completions to the trie and marks n as unexpandable (step 2.2). For example,
a good value for τ is 10, since a search engine typically returns no more than 10 sug-
gestions for a query. In other words, when the search engine S returns fewer than 10
completions, it is very likely that there are not many queries in S that can complete
the partial query, and so further expanding n will not be productive.

Definition 3.3 (Prefix path and query). Given a trie T , a prefix path of a node n,
denoted as PrefixPath(n), is the path from the root of T to n. The query formed by
concatenating the words on the prefix path of n is called the prefix query of n, denoted
as PrefixQuery(n). Prefix paths and queries in a subtree of T rooted at a node m of T
are defined similarly, but with m acting as the root.

If S returns a sufficient number of completions, BEAMSAMPLER will then analyze
the completions to see if there are completions that start with (a) a letter, (b) a digit,
or (c) some special characters such as ‘$’. Note that it is possible that the completions
contain queries for all the three cases.

Case a: If BEAMSAMPLER finds a completion that falls into the first case, it will con-
struct 26 enumeration queries, each in the form of “PrefixQuery(n) [a-z]” (step 2.3.a).
These enumeration queries are to discover completions to the prefix query at the node
n that start with a particular letter (in [a-z]). For example, if the prefix query for the
node n is “books for”. Then the enumeration queries are “books for a”, “books for b”,
etc. A possible completion to “books for a” is “books for adult”.

Case b: If there is a completion that falls into the second case, the algorithm will
build 10 partial queries, each consisting of PrefixQuery(n) followed by a digit, e.g.,
“books published in 2” (step 2.3.b). These queries will be useful for finding query tem-
plates (e.g., books published in [year]) whose parameter values are numbers (e.g., “books
published in 2014”).

Case c: Lastly, if there is a completion in the third case, the algorithm will form
a query for each special character c, e.g., “books under $” (step 2.3.c). These queries
will be useful to discover instances of parameters that have special data types, e.g.,
monetary values as in “books under $5”.

All the queries obtained above are sent to S to obtain completions which are then
added to T (step 2.3.d). The algorithm next computes the yield ratio for n (see Defini-
tion 3.1), based on the obtained completions. If the yield ratio is less than the threshold
γ, BEAMSAMPLER will then mark n as unexpandable, or to be more exact, not further
expandable (step 2.3.e).

(3) Beam construction: In this step, the algorithm moves onto the next level by incre-
menting l (step 3.1). Each expandable node n at this level is evaluated for its utility for
expansion, using a utility function f(n) as defined below. In particular, Q2P takes f(n)
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to be the number of children of n. This captures the intuition that the more children n
has, the more likely it will be part of a query template (e.g., a cue word).

The nodes are then sorted by their utility scores (step 3.3) and top-k nodes with the
largest utilities are then selected as the candidates for the expansion (step 3.4). They
effectively form the beam for the next iteration.

Definition 3.4 (Utility of node). The utility of a node n in a trie T , denoted by f(n),
measures the usefulness of n to the sampler for discovering queries that may reveal
query templates.

It is important to note that a node can have children before it is expanded. These
children are typically obtained when the ancestors of the node were expanded. Note
also that the number of children of a node will typically grow after its expansion. The
value of f(n) above refers to the number of children of node n before n is expanded. A
node with a large utility before the expansion is likely to obtain more children after
the expansion.

For example, consider a trie with only the root “books”. After expanding the root, we
may obtain completions “books for kids” and “books for men”. In this case, the node
“for” (a child of root) already has two children: “kids” and “men”, before it is even
expanded. In other words, its f(n) = 2.

Example: To illustrate the working of the BEAMSAMPLER algorithm, consider sam-
pling queries for the entity “books” with the beam size k set to 2, the probing threshold
τ set to 2, and the yield-ratio threshold γ set to 5.

The initial trie and beam will then both contain a single node “books”. Suppose that
there are more than two completions obtained for the prefix query “books” (thereby ex-
ceeding the probing threshold). The “books” node is then eligible for further expansion.
Suppose that the completions to the prefix query “books” all start with a letter. Then
the algorithm will only send partial queries in the form of “books [a-z]”, e.g., “books a”,
to the engine, when it expands “books”.

Suppose that after expanding “books”, we obtain a set of completions as shown in
Figure 4.a. Since there are 7 completions, the yield ratio for “books” is 7, which exceeds
the yield-ratio threshold. Hence, “books” will not be marked as unexpandable. As a
result, all its children are now eligible for further expansion.

To decide on the expansion candidates for the nodes at the second level, the algo-
rithm evaluates the utility of all the nodes at this level. Since nodes “for” and “in”
(shown in bold font) have the largest numbers of children (thus the largest utility
scores), they are added into the beam. Since the beam size is 2, no other nodes may be
added.

The algorithm then goes on to the next iteration, i.e., expanding the nodes in the
beam for the level 2. Figure 4.b shows the expansion result.

The similar process is then repeated on level 3 and so on, until no more expandable
nodes can be found at some level.

Discussions: (1) Suppose that the maximum number of completions given by a search
engine is b, e.g., typically b = 10. The maximum utility of a node may be greater than b.
For example, consider expanding the root “books”. Suppose that one of the completions
to “books” (step 2.1 in Algorithm 1) contains “for”, e.g., “books for kids”. Suppose further
that after completing “books f” (step 2.3.a), we obtain 10 completions such as “books
for teens” and ”books for boys” that all start with “books for”. Further assume that
“books for kids” is not among the completions. Then the “for” node (a child of “books”)
will have 11 children.

(2) The situation where all the completions to an enumeration query (e.g., “books
f” in step 2.3.a) start with the same word (e.g., “for”) is rare, unless there is an ex-
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Fig. 4. Examples illustrating the beam sampler and template discovery algorithms

tremely common phrase (especially a prepositional phrase, e.g., “books for ”) used in
the queries. More commonly, the completions to an enumeration query may start with
a variety of words. For example, the completions to “books i” may contain popular
phrases, e.g., “books in” as in “books in Spanish”, but may also contain less popular
phrases such as “books I should read”. This in a sense reflects the diversity of queries
users pose on the search engines. As a result, it is rare that the top-k nodes chosen to
be expanded (step 3.4) would have exactly the same utility value.

(3) BEAMSAMPLER uses a beam of the same size, i.e., k (step 3.4), to restrict the
expansion of the nodes at all levels of the trie. However, since short queries tend to
have more completions than long ones, search engine may provide more suggestions
for short queries. Thus, an alternative is to reduce the beam size when the expansion
moves down to the lower levels of the trie.

Complexity analysis: First, we consider the maximum number of queries that
BEAMSAMPLER sends to the search engine for a given seed, e.g., “books”. To simplify
the discussions, we assume that the completions to a prefix query (step 2.1) all start
with a letter, which is a common case. Hence only 26 enumeration queries are sent in
step 2.3 for each of the top-k nodes chosen to be expanded at level l. We further as-
sume that the last level of the trie where nodes are expanded is h. Recall that the root
is located at level one (e.g., see Figure 4.a). Then, except for level one, up to k nodes
may be expanded at a level. For every expanded node, BEAMSAMPLER poses a prefix
query and 26 enumeration queries to the search engine. Thus, the maximum number
of queries is 27 + (h− 1) ∗ k ∗ 27.

Next, we estimate the maximum size of the trie, i.e., the largest number of nodes
that the trie can have. Here we make a simplifying assumption that there are no more
than w words in a completion, e.g., w = 10. Then, for an expanded node at level l, each
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ALGORITHM 2: PATMINER(T , σ): The frequent template miner

Input: T , a trie of queries obtained from a search engine;
σ, a threshold on the minimum support count

Output: P , a set of frequent templates
1. N ← DISCFREQNODES(T , σ) /* Discover frequent nodes with support count ≥ σ */
2. P ← DISCFREQPATS(T ,N , σ) /* Discover frequent prefix templates with support count ≥ σ
*/

of its completions may add w − l new nodes to the trie, one for each of the new words
in the completion.

Suppose that the maximum number of completions to a query given by a search
engine is b. Then an expanded node n at level l can have up to 27 ∗ b completions
and thus up to 27 ∗ b ∗ (w − l) new nodes may be added to the trie. Note that the
completions to the prefix query of n (step 2.1) may not be among these obtained by the
enumeration queries for n (step 2.3). Thus, the maximum number of nodes in the trie
is

∑w

l=1
(k′ ∗ 27 ∗ b ∗ (w − l)), where k′ = 1 when l = 1; and k otherwise.

3.2. Trie-based template discovery

As described in Section 3, the job of the template miner in Q2P (Figure 3) is to
mine the templates hidden in the set of queries discovered by BEAMSAMPLER from
a search engine. One way to implement the template miner is to represent each query
as a sequence of words and apply existing sequential pattern mining algorithms, e.g.,
[Agrawal and Srikant 1995], to discover query templates. However, existing algorithms
often require many passes through the data. Furthermore, they do not exploit the
uniqueness of our problem setting: (1) Each discovered template captures the com-
mon prefix shared by a number of queries (see Definition 3.5 below). (2) Queries are
already stored in a prefix-tree structure that reflects the common structure among dif-
ferent templates. Existing algorithms often need to spend extra efforts to construct
such a structure from raw data, e.g., see PrefixScan [Pei et al. 2001], in order to reduce
the computational costs in generating candidate subsequences.

We now describe PATMINER, a template mining algorithm that takes the advantage
of our unique problem setting and mines query templates directly from the queries
stored in a trie. We now first define several concepts used in the algorithm.

Definition 3.5 (k-sequence, subsequence, and frequent k-sequence). A query q with
k words is a k-sequence: <w1, w2, ..., wk>. A sequence q: <w1, w2, ..., wk> is a prefix
subsequence of a sequence p if p contains q as its prefix. That is, p can be represented
as <w1, w2, ..., wk, wk+1, ..., wn>. We may refer to prefix subsequence simply as subse-
quence. Given a set of queries Q, the support (or support count) of a sequence q is the
fraction (or number) of queries in Q that contain q as a subsequence. A k-sequence is
frequent if its support (or support count) is ≥ a threshold σ. σ may also be denoted as
min sup, i.e., the minimum support or support count.

Algorithm: Algorithm 2 shows the PATMINER algorithm. It takes as the input (1) a
trie T that contains the queries obtained by BEAMSAMPLER from a search engine; and
(2) σ, a threshold on the minimum support count for frequent templates. It outputs a
set of frequent prefix templates in T that have at least the minimum support σ. We
assume that the query trie T provided by BEAMSAMPLER also records, for each node
n in T , the number of queries that end at n. These numbers will be used in PATMINER

to compute the support counts of nodes in T .
PATMINER performs the discovery in two steps.
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(1) Discovering frequent nodes: In the first step, the algorithm finds all frequent nodes
N in the trie T by calling the function DISCFREQNODES. A node n is frequent if the
prefix query of n, i.e., PrefixQuery(n) (see Definition 3.3), has at least the minimum
support. In other words, there are at least σ number of queries in T that contain
PrefixQuery(n) as a subsequence.

DISCFREQNODES uses a post-order traversal over T to find the frequent nodes. Dur-
ing the traversal, frequent leaf nodes are first found. These nodes are the ones which
have at least σ number of queries ending at the nodes.

Next, DISCFREQNODES finds frequent internal nodes. It computes the support
count of an internal node n as the sum of the support counts of all n’s children plus the
number of queries that end at n. It marks n as frequent if its support count is ≥ σ.

(2) Discovering frequent patterns: In the second step, the function DISCFREQPATS dis-
covers a set of frequent templates P based on the frequent nodes discovered at the first
step. It traverses the trie T in pre-order, and checks if the current node n is frequent
and also satisfies three conditions: (1) n is not the root of T ; (2) n has at least two
children; and (3) there are no queries that end at n. Note that if n has only one child,
say m, then m is regarded as a node that expands the (incomplete) template of n. For
example, if the template for n is “flights from lax” and m is “to”, then the template
expanded with m is “flights from lax to”. Note also that condition 3 is to ensure that n
will be followed by a parameter (see below).

If n satisfies the above conditions, DISCFREQPATS will output a template in the
form of “E C P ”, where E represents the entity name at the root, C is a cue word or
phrase formed by concatenating the words on the prefix path to n except for the root,
and P is a parameter that represents the content following the cue phrase. The values
of P are the (immediate) completions to C in the trie.

Example: Consider the trie produced by the BEAMSAMPLER and shown in Figure 4.b.
Note that each node n in the trie is annotated with two numbers (inside ()). The first
number is the number of queries that ends at n. As described above, these numbers
are provided by BEAMSAMPLER. For example, no queries end at the node “for” at the
second level; but there is one query “books for kids” that ends at the node “kids” at the
third level.

The second number is generated by the DISCFREQNODES function, which repre-
sents the support count of the node n. As described above, the support counts of nodes
are computed by DISCFREQNODES via a post-order traversal of the trie. For example,
the support count of the node “kids” at the third level of Figure 4.b is 3, since the sup-
port count of its only child “ages” is 2, and there is only one query “books for kids” that
ends at the node.

With the computed support counts, we know which nodes in the trie are frequent.
For example, suppose min sup (i.e., the minimum support count or σ in Algorithm 2)
is 2. Figure 4.c lists all the frequent nodes found from the trie in Figure 4.b.

Finally, based on the frequent nodes, the algorithm discovers frequent patterns and
their instances using the DISCFREQPATS function. The results are shown in Figure
4.d. For example, the first template is books for [P], where “books” is the entity, “for”
is the cue word, and P is a parameter representing the targeted readers of books.
The algorithm also discovers instances of P such as “kids” and “men”, which are the
immediate completions to the “for” node in the trie.

Discussions: In Section 5, we show that the majority of frequent instances, i.e., those
appearing in a large number of queries, are semantically valid. However, it is possi-
ble that the same entity and cue phrase (e.g., “books for”) may introduce instances of
multiple semantic types (e.g., reader as in “books for kids” and holiday as in “books for
Halloween”) or may be followed by non-instances (e.g., “books for free”).
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One approach to determining the semantic types of instances is to learn, e.g., from
a domain model, a classifier that predicts which attribute the instance in the sample
query belongs to. Such a domain model may consist of a set of attributes and some
values for the attributes, e.g., similar to the one in Deep2Q (Section 4).

Furthermore, if an instance is not recognized as having an existing type, it may be
presented to the system developer for the possible addition of a new attribute to the
domain model for representing the instance. A similar approach is often used in data
integration systems to recognize the semantic types of attributes in a new data source,
e.g., [Ives et al. 2009]. We leave this as one of the future works.

Properties: It can be shown that PATMINER has the following key properties on the
efficiency of the algorithm and the characteristics of discovered templates.

PROPOSITION 3.6. PATMINER makes two passes over the trie.

Recall that PATMINER (Algorithm 2) makes the first pass through the trie (in a post-
order traversal) to discover frequent nodes; it then makes another pass (in a pre-order
traversal) to discover frequent patterns and instances.

PROPOSITION 3.7. All templates discovered by PATMINER start with an entity
name which corresponds to the root of the trie.

As described above, PATMINER outputs templates in the form of “E C P ”, where E
represents the entity at the root, P the parameter, and C the sequence of words on the
path between the root and the parameter value in the trie.

4. INTEGRATING Q2P INTO DEEP2Q

We now first describe Deep2Q, a template-driven hybrid integration system for the
Deep Web. We then discuss how Deep2Q can leverage Q2P to discover query templates
for the integration system.

The Deep Web consists of over 25 million data sources whose contents are only ac-
cessible through form-based query interfaces [Madhavan et al. 2007]. These sources
contain a huge amount of high-quality data and are becoming indispensable resources
in almost every aspect of our lives, from online shopping, booking flights, to job hunt-
ing. A key challenge to finding the information on the Deep Web is that the desired
information is often dispersed over a large number of heterogeneous and autonomous
data sources. As a result, users need to locate the sources, understand their query
forms, formulate separate queries, and assemble results from different sources—an
extremely time-consuming and labor-intensive process.

To lift this burden from users, past research has proposed two very different ap-
proaches: virtual and surfacing, to integrating the Deep Web sources. Both approaches
have their advantages and disadvantages. A virtual approach [Dragut et al. 2012;
Khare et al. 2010; Dong and Naumann 2009] answers queries using fresh data from
the sources, but suffers from slow query response. On the other hand, a surfacing ap-
proach [Madhavan et al. 2008; Raghavan and Garcia-Molina 2001; Sheng et al. 2012;
Jin et al. 2011b; Jin et al. 2011a; Wu et al. 2006] can process queries more efficiently
using the data prefetched from the sources. But it requires a hefty storage space and
places an excessive load on the sources for crawling and refreshing the data. These
reasons, plus the difficulty in formulating crawling queries, limit the current surfac-
ing approaches to only being able to fetch a small portion of the Deep Web.

To address these limitations, we are developing Deep2Q, a novel template-driven
hybrid integration system that aims to strike a balance between the two (extreme)
approaches [Wu 2013b; Wu and Zhong 2013; Wu 2013a]. The key idea is that the sys-
tem organizes the queries that it can answer into templates or parameterized queries
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Fig. 5. The Deep2Q architecture

(e.g., jobs in [location] where location is a parameter in the template) and proactively
determines how to answer the queries in the templates. This in effect constructs evalu-
ation plans for the templates. For popular (i.e., frequently asked) queries (e.g., “jobs in
Chicago”) in the templates, the system may also obtain answers from the sources ahead
of query time and cache the results for fast query response. This selective caching strat-
egy avoids the high computational and storage costs as in the surfacing approach. For
the queries that the system does not have cached results, their answers may be ob-
tained on the fly from the sources by leveraging the precompiled evaluation plans for
their corresponding templates. This avoids the need to perform expensive query plan-
ning and optimization at runtime [Ives et al. 2000] as in the virtual approach.

Deep2Q architecture: Figure 5 shows the architecture of Deep2Q for a domain D of
interest (e.g., book search). Deep2Q maintains a model M for D which consists of a
set of domain attributes (e.g., author and language) and a set of templates which are
parameterized queries defined using the domain attributes in D.

Deep2Q grows the domain model M in a bootstrapping fashion. Initially, M may be
empty or may contain a few popular attributes and instances extracted from a domain
ontology or provided by domain experts. Next, Deep2Q starts to discover query tem-
plates and their instances from its underlying search engines. As described in Section
3.2, when a new query template T is found, the parameter P in T will be checked,
e.g., via a classifier trained using the current version of M , to see if it is semantically
similar to some attribute in M . If yes, new instances of P found in the queries will be
added into M . Otherwise, a new attribute (representing P ) and its instances will be
added to M , after the possible verification by the system developer or domain expert.
This in effect grows M into a new version M ′.

Deep2Q operates in two modes: offline and online. A template manager (rounded
rectangle on the left in Figure 5) and a query processor (on the right in Figure 5) are
responsible for the offline and online operations respectively. When offline, the tem-
plate manager takes a set of templates as the input and invokes a template compiler to
construct evaluation plans for the templates. For popular queries, it also instantiates
the plans (by replacing parameters with values from the queries), executes the plans,
and store results in the caches repository. When online, the query parser takes a user
query Q, matches Q with the templates, and instantiates the matched templates. If Q
turns out to be a popular query and has already been processed, it simply fetches its
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result from the caches. If not, it will execute the instantiated plan for Q and fetch the
result from the sources.

Query language: A key issue that needs to be addressed when developing a data in-
tegration system is the choice of query language. Existing data integration systems
typically expect users to write queries in some sorts of structured query languages
such as SQL and XQuery. We clearly cannot expect average web users to have the
knowledge of these languages. In fact, as described above, even the forms could be
overly complex for web users. On the other hand, keyword queries, even though they
have become extremely popular especially with web search engines, are notoriously
known for their ambiguities. To address this issue, we propose to use parameterized
phrase queries and their instances to represent templates and queries in Deep2Q re-
spectively. In particular, we focus on queries expressed in noun phrases (see Definition
2.1). A noun phrase query language L then consists of all noun phrases in a domain of
interest.

Research has found that a large fraction of web queries (i.e., queries posed on search
engines) are noun phrases [Li 2010]. Furthermore, we believe that noun phrase queries
are much more precise than the keyword queries. They are also more natural and less
complex to formulate than the form queries for the average web users. Readers are
referred to [Wu 2013b] for the challenges and our solutions to query parsing.

Template discovery: In addition, there is an important issue of how templates are
obtained. Intuitively, Deep2Q would want to have templates that can capture most (if
not all) of user queries. It would also want to know what queries in each template are
most likely to be asked so that it can make informed decision on caching their results.
One solution is to have Deep2Q continuously monitor user queries, discover frequent
queries, and then build query templates. The downside is that Deep2Q may perform
very poorly initially and thus might not attract enough users to learn query patterns.

Another solution is to learn popular queries and query patterns from query logs
of web search engines [Pandey and Punera 2012; Agarwal et al. 2010]. However, as
discussed earlier, while search engine logs are invaluable resources for discovering
query templates, they are often proprietary and not readily available to the general
public.

To address this challenge, Deep2Q incorporates Q2P into its template manager (Fig-
ure 3) as a new module for template discovery. This module periodically samples the
queries from the underlying search engines, using the beam-search query sampler as
described in Section 3.1, and discovers new query patterns from the sampled queries,
using the trie-based pattern miner, as described in Section 3.2.

5. PERFORMANCE EVALUATION

We have conducted an extensive set of experiments to evaluate the performance of
Q2P. We used four search engines in these experiments and obtained query comple-
tions via their RESTful web services: Amazon (product search) [Amazon 2014], Bing
[Bing 2014], Google [Google 2014], and Yahoo! [Yahoo! 2014]. We considered a variety
of entities including book, flight, job, movie, car, and apartment.

The goal of our experiments is to measure the efficiency of BEAMSAMPLER in sam-
pling queries from search engines and the effectiveness of PATMINER in discovering
meaningful templates. In particular, a key metric in measuring the efficiency of BEAM-
SAMPLER is its yield ratio, which is given by the ratio of the number of unique comple-
tions (i.e., completed queries) obtained from a search engine to the number of queries
BEAMSAMPLER poses to the engine. In other words,
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Table I. The performance of BEAMSAMPLER over different entities and engines

Entity Engine # of levels # of queries # of completions Yield ratio

flight
Bing 8 1,122 9,993 8.9

Google 7 799 5,284 6.6
Yahoo! 11 1,600 8,562 5.3

job
Bing 10 1,473 12,650 8.6

Google 9 1,290 6,429 5
Yahoo! 10 1,398 7,042 5

movie
Bing 8 967 10,897 11.3

Google 7 815 4,581 5.6
Yahoo! 8 925 5,393 5.8

car
Bing 9 1,223 8,267 6.7

Google 9 1,231 5,123 4.2
Yahoo! 7 824 4,458 5.4

apartment
Bing 9 1,439 8,674 6

Google 8 965 4,680 4.8
Yahoo! 8 1,173 5,952 5.1

YieldRatio(seed, engine) =
#completions(seed, engine)

#queries(seed, engine)
(1)

Note that a search engine may suggest up to k (e.g., k = 10) completions to a partial
query. If there are a large number of past queries that start with the partial query (e.g.,
“jobs in”), then the engine will typically return the k most popular completions. Other-
wise, the number of completions may be much smaller than k (e.g., there may be fewer
completions to “jobs xerox” than “jobs in”). Since our goal is to learn query templates,
we would want our sampler to be able to sample popular queries (e.g., those completing
“jobs in” such as “jobs in Chicago” and “jobs in Houston”) that reveal common interests
of users (e.g., as captured in the query template jobs in [location]). If a partial query
does not have many completions, then it is unlikely to be a part of popular queries,
and hence less useful for template discovery. To achieve this, BEAMSAMPLER uses the
beam-search strategy to avoid the expansion of nodes in the trie that correspond to
such partial queries. Thus, if the strategy works, BEAMSAMPLER should have a large
yield ratio as defined in Formula 1.

Furthermore, since it is prohibitive to send a large number of queries to a search
engine, we would also want our sampler to be able to obtain as many completions as
possible with a minimum number of partial queries. Thus, if a sampler is productive
or efficient, then it should also have a large yield ratio.

5.1. Evaluating BEAMSAMPLER

We conducted three sets of experiments to evaluate BEAMSAMPLER. In the first set of
experiments, we ran BEAMSAMPLER over different entities and engines, and analyzed
its effectiveness. In the second set of experiments, we examined the contribution of dif-
ferent components in BEAMSAMPLER to its efficiency. In the third set of experiments,
we studied the effect of beam size on the performance.

(1) Overall performance: Table I shows the results of the first set of experiments. For
each of the five entity types in the first column, it shows the results of running BEAM-
SAMPLER on three engines: Bing, Google, and Yahoo!. In each case, the beam size (i.e.,
k in Algorithm 1) was set to 10; the threshold on the minimum number of completions
for expansion (i.e., τ ) was set to 10; and the threshold on the minimum yield ratio of an
expandable node (i.e., γ) was set to 5. Starting from the third column, the table shows
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Table II. The contribution of components in BEAMSAMPLER to its performance (entity =
“book”, beam size = 10)

Engine Component # of queries # of completions Yield ratio

Amazon

All 597 2,516 4.2
No beam 4,727 7,825 1.6

No min yield 645 2,381 3.7
No probing 2,257 2,361 1

Bing

All 1,091 9,250 8.5
No beam stopped at level 3

No min yield 1,117 9,143 8.2
No probing 2,997 8,908 3

Google

All 1,135 5,470 4.8
No beam stopped at level 5

No min yield 1,097 5,180 4.7
No probing 2,997 4,909 1.6

Yahoo!

All 930 5,327 5.7
No beam stopped at level 2

No min yield 1,787 9,802 5.5
No probing 7,437 21,461 2.9

the number of levels in the trie constructed by BEAMSAMPLER, the number of queries
sent to the engine, the number of completions obtained, and the overall yield ratio.

We can observe that the number of levels ranges from 7 (flight at Google) to 11 (flight
at Yahoo!), the number of queries ranges from 799 (flight at Google) to 1,600 (flight at
Yahoo!), and the number of completions ranges from 4,458 (car at Yahoo!) to 12,640
(job at Bing). The yield ratio ranges from 4.2 (car at Google) to 11.3 (movie at Bing).

These indicate that: (1) the engines may produce substantially long completions,
e.g., with 11 words; (2) the number of queries posed to the engine is modest, e.g., no
more than 1,600; and (3) the algorithm is quite efficient, e.g., only two cases where the
overall yield ratio falls below 5.

Note that the yield ratio may be greater than 10 (e.g., 11.3 in Table I for movie at
Bing). The reason is that search engine, e.g., Bing, may return more than 10 comple-
tions to a partial query, and all completions are retained by the algorithm.

(2) Contribution of components: Table II shows the results of the second set of experi-
ments. In this set of experiments, we ran BEAMSAMPLER on four engines to discover
queries for the “book” entity. The beam size was set to 10 in all these experiments. For
each engine, we collected the performance data in four cases. In the first case (All in
the table), all key components in BEAMSAMPLER are in effect. These components are
(a) beam, i.e., the method for reducing the search space using beam; (b) min yield, i.e.,
the technique of using a threshold γ on the minimum yield-ratio for stopping the ex-
pansion of unproductive nodes; and (c) probing, i.e., the method of probing the engine
using a prefix query before sending expensive enumeration queries.

The next three cases each corresponds to the BEAMSAMPLER with one of the key
components removed. For example, no beam means that BEAMSAMPLER does not use
the beam to restrict the nodes for further completion, but the minimum yield threshold
γ and the probing are still in effect.

From the table, we can observe that the full-fledged BEAMSAMPLER (i.e., the All case
with no component removed) has the highest yield ratio at all four engines, compared
to the version of BEAMSAMPLER with one of the key components removed. These ratios
(e.g., 4.2 for Amazon) were highlighted using bold font in the last column of the table.

When beam was not used to restrict the expansion, the yield ratio dropped to 1.6
(from 4.2) at Amazon. Recall that the beam is used to pick the top-k most promising
nodes (i.e., likely to generate many completions). So when beam is not used, the al-
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Table III. The effect of beam size in BEAMSAMPLER (entity = book)

Engine Beam size # of queries # of completions Yield ratio

Amazon

5 319 1,350 4.23
10 597 2,516 4.21
15 713 2,580 3.6
20 966 3,224 3.3

Bing

5 569 6,296 11.1
10 1,091 9,250 8.5
15 1,721 13,298 7.7
20 2,641 18,481 7

Google

5 503 3,211 6.4
10 1,135 5,470 4.8
15 1,510 6,878 4.5
20 1,974 8,940 4.5

Yahoo!

5 658 3,640 5.5
10 930 5,327 5.7
15 1,629 8,764 5.4
20 2,088 10,765 5.1

gorithm will send a query to search engines for every node in the trie. Since many of
these nodes might not bring back many completions, the yield ratio, which measures
the average yield of nodes, may drop significantly.

To make it worse, sending too many queries to the engines may cause the algorithm
to be blocked from the access to the engines. Indeed, this occurred to all engines except
for Amazon. For example, the sampling process was forced to terminate at Bing, when
the algorithm was expanding the nodes on the third level of the trie. These indicate
the importance of the beam-based sampling.

Using the minimum yield-ratio threshold γ further prunes away some of the less
productive nodes among the top-k nodes selected by the beam. This results in a notable
increase in the yield ratio, ranging from .1 at Google to .5 at Amazon.

The results also show that probing was very effective in improving the yield rate.
For example, significant increase can be observed in all four engines, with the increase
ranging from 2.8 (Yahoo) to as high as 5.5 (Bing).

(3) Effect of beam size: Table III compares, for each of the four engines, the performance
of BEAMSAMPLER for the entity “book”, when the beam size is set to 5, 10, 15, and 20.
We can observe that the yield ratio tends to drop when the size of beam increases. For
example, three engines had the best ratio with the beam size set to 5; and one engine
(Yahoo!) had the best with the beam size of 10. The drop of the yield ratio from the
beam size of 5 to 20 ranges from .4 (Yahoo!) to 4.1 (Bing).

So the question is what is the best beam size? Could it be 5 or 10 as the above results
suggested? To better answer this question, we further examined the performance of
BEAMSAMPLER when the beam size ranges from 1 to 10. Figure 6 plots the results.

Note that as described in Section 3.1, when the beam size is k, BEAMSAMPLER only
select top-k nodes with the largest utility at each level of the trie for expansion. So if
the beam size is one, then first, the root is selected for expansion; next, only one of its
children will be selected for the next level of expansion; and so on.

From the figure, we can observe that the beam size that gives the best yield ratio
may differ from engine to engine. For example, the best beam size is 2 for Bing, 4 for
Google, and 1 for Yahoo! and Amazon.

We can also observe the overall trend that the yield ratio tends to drop when the
beam size is increased, although some fluctuations may occur, e.g., there is a large
jump from the beam size of 1 to 2 for Bing. This suggests that the beam size can not be
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Table IV. Number of templates discovered by PATMINER when the minimun support varies

Bing Google Yahoo! Bing Google Yahoo! Bing Google Yahoo!

flight 57 56 55 28 25 32 8 9 7

job 98 103 92 29 32 32 10 7 7

movie 45 78 49 14 17 20 9 7 8

car 73 92 58 8 22 16 6 8 9

apartment 33 64 55 17 22 26 9 8 9

Entity
min_sup = .001 min_sup = .01 min_sup = .05

too large. On the other hand, smaller beam size tends to produce fewer completions, as
can be observed from Table III. This suggests that the beam size can not be too small.

Thus, if we set the minimum beam size to be 5, we can estimate from Figure 6 that
the best beam sizes for Amazon, Bing, Google, and Yahoo! are 8, 6, 8, and 9 respectively.

5.2. Evaluating PATMINER

In evaluating PATMINER, we performed three sets of experiments. First, we evaluated
the quantity and quality of the templates discovered by PATMINER. Second, we col-
lected and examined the instances discovered by the algorithm. Third, we studied the
effects of the beam size in BEAMSAMPLER and the minimum support threshold for the
frequent templates in PATMINER on the quality of discovered templates.

(1) Template discovery: In this set of experiments, we used the the completion queries
obtained by BEAMSAMPLER from three engines for five different types of entities as
shown in Table I. The beam size of BEAMSAMPLER was set to 10 for these experiments.

Recall from Section 3.2 that PATMINER traverses twice over each trie to discover
frequent templates that have at least the minimum support. It also extracts instances
of parameters from the completions that follow the templates (examined next).

Table IV shows, for each entity and engine, the number of templates discovered by
PATMINER when the minimum support threshold, denoted as min sup, varies from
.001, .01, to .05.

We can observe that the number of discovered templates ranges from 33 (apartment
at Bing) to 103 (job at Google) when min sup is .001, from 8 (car at Bing) to 32 (e.g.,
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Table V. Top-10 templates discovered by PATMINER (min sup = .001)

Entity Bing Google Yahoo!

flight

flights from (4361)

flights to (667)

flights out of (561)

flights into (541)

flights from lax to (531)

flights from chicago to (525)

flights from houston to (505)

flights from atlanta to (478)

flights from tampa to (431)

flights from new (421)

flights from (2152)

flights in (302)

flights from london to (294)

flights with (276)

flights to (272)

flights out of (267)

flights london to (260)

flights from denver to (256)

flights from paris to (250)

flights from charlotte (245)

flights new (5226)

flights new xbox 360 jasper youth (2956)

flights new xbox 360 jasper youth nike (2278)

flights of (614)

flights new xbox 360 jasper youth nike zoom (614)

flights new xbox 360 jasper youth nike golf (408)

flights with (403)

flights in (347)

flights new xbox 360 jasper youth knee (331)

flights new xbox 360 jasper youth nike vapor (276)

job

jobs that (4312)

jobs with (1467)

jobs for (1385)

jobs that pay (1098)

jobs on (999)

jobs that require (972)

jobs near (882)

jobs with a (734)

jobs in (671)

jobs at (664)

jobs that (3042)

jobs with (859)

jobs that pay (650)

jobs for (641)

jobs that require (633)

jobs with a (604)

jobs that make (444)

jobs for 15 year olds in (294)

jobs that involve (292)

jobs in (270)

jobs that (3609)

jobs that require (895)

jobs you can (588)

jobs you can get with a (584)

jobs that make (434)

jobs for (355)

jobs that pay over (332)

jobs that require a (324)

jobs that need (292)

jobs in (269)

movie

movies for (1337)

movies like (1248)

movies in (928)

movies playing at (909)

movies on (790)

movies playing in (645)

movies with (642)

movies at (627)

movies like the (523)

movies playing at the (335)

movies on (1112)

movies like (700)

movies from (519)

movies new (321)

movies like the (286)

movies in (269)

movies at (268)

movies that (169)

movies that came out in (167)

movies on netflix about (139)

movies coming (1744)

movies coming out (1151)

movies of (688)

movies coming out on (398)

movies in (367)

movies for (360)

movies of the (334)

movies coming out in (316)

movies coming to (213)

movies 8 in (210)

car

cars for (1854)

cars in (1046)

cars with (838)

cars for sale in (715)

cars under (541)

cars in the (450)

cars for under (336)

cars under 5000 in (206)

cars under 4000 in (66)

cars in the movie (63)

cars that (1643)

cars in (390)

cars for sale by owner in (386)

cars that are (357)

cars that start with (320)

cars with (311)

cars for sale in (286)

cars that have (260)

cars that run (190)

cars that run on (189)

cars with (904)

cars 4 (661)

cars for (590)

cars to (462)

cars with the (402)

cars with the best (400)

cars 1 (309)

cars in (267)

cars and (254)

cars xbox (167)

apartment

apartments for (2141)

apartments for rent in (2138)

apartments near (1542)

apartments on (1167)

apartments in (660)

apartments for rent in new (494)

apartments west (473)

apartments for rent in san (445)

apartments san (429)

apartments for rent in fort (234)

apartments with (1015)

apartments on (734)

apartments near (631)

apartments at (476)

apartments on the (402)

apartments for rent in (314)

apartments in (297)

apartments downtown (277)

apartments south (215)

apartments at the (211)

apartments for (2392)

apartments for rent in (1386)

apartments on (580)

apartments for rent in new (567)

apartments columbus (555)

apartments near (527)

apartments for rent in san (488)

apartments on the (331)

apartments for sale in (325)

apartments in (270)
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flight at Yahoo!) when min sup is .01, and from 6 (car at Bing) to 10 (job at Bing) when
min sup is .05.

We further examined the templates discovered by PATMINER. Table V shows the
top-10 most frequent templates and their support counts (in parenthesis), when the
min sup is set to .001. For each template, it shows its “E C” part where E is the entity
name (e.g., “flights”) and C is the cue phrase (e.g., “from”, see Section 3.2). For exam-
ple, the most frequent template for flight discovered from the completion queries from
Bing is “flights from”, which appeared as a prefix in 4,361 (out of 9,993, see Table I)
completions.

From Table V, we can observe that almost all the templates start with the entity
name as the head noun. A few exceptions occur in “cars and” (e.g., “cars and trucks”)
and “cars 1” at Yahoo! (e.g., “cars 1 game”). We can also see that the head noun is
typically followed by either a phrase or a clause. There are two types of phrases: (1)
prepositional, e.g., “flights from”, “jobs for”, and “movies on”; and (2) participial, e.g.,
“movies playing at” and “movies coming out”. The clauses are mostly introduced by
“that”, e.g., “jobs that require”, “jobs that need”, and “cars that run”.

Furthermore, we can see that prepositions are commonly used to introduce the pa-
rameters (and thus their values). For example, “flights from”, “jobs in”, “movies at”,
“cars under”, and “apartments near”. Nevertheless, other types of introductory words
may also occur in the templates. For example, verbs as in “jobs that require”, deter-
miners as in “jobs with a”, and nouns as in “flights from new” (where “new” starts a
place name, e.g., “New York” and “New Orleans”).

An interesting situation occurs when the entity name has multiple senses. For ex-
ample, flights could be airline flights or flight games as in the templates for “xbox 360
flight games” found at Yahoo!. Furthermore, sometimes the cue phrases for the pa-
rameters may start with a number, e.g., “cars 4” as in “cars 4 less” where 4 stands for
“for”.

(2) Instance discovery: In the second set of experiments, we examined the instances
discovered by PATMINER. Table VI shows the top-10 instances that contain a single
word for some of the top templates shown in Table V. These instances are ranked by
the number of occurrences in the queries that follow the templates.

We can observe that for the majority of the templates, the discovered instances have
similar semantic meanings. For example, the instances that follow “flights from” are
mostly city, state, or country names. These instances can thus be captured in the same
parameter, e.g., [location], to form a complete template, e.g., flights from [location].

There are also several templates whose instances are of mixed types. For example,
the instances for “movies for” can be people (e.g., “kids” and “grownups”), holidays (e.g.,
“Halloween”), and years (e.g., “2014”). In these cases, it is best to construct a (refined)
template for each different type of instances. For example, movies for [person], movies
for [holiday], and movies for [year].

As discussed in Section 3.2, to determine the semantic type of the instances, we may
employ a classifier trained using the attributes and instances in a domain model (e.g.,
the domain model maintained by Deep2Q).

We also examined the instances discovered by different engines for the same tem-
plate. Table VII shows the results for five templates at three engines: Bing, Google,
and Yahoo!.

We can observe that the top instances from different engines may be very different.
For example, there are only three (“Denver”, “xna”, and “jfk”) in common between the
top-10 instances for “flights from” discovered at Bing and Google. Moreover, the top
templates from different engines may also vary a lot as Table V shows. Hence, mining
templates and instances simultaneously from multiple engines can not only increase
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Table VI. Top-10 one-word instances for some of the top templates

Entity Pattern Engine Top-10 instances

flights from Bing houston, atlanta, tampa, indianapolis, zurich, xna, quito, denver, boston, jfk

flights to Google hawaii, london, orlando, india, ireland, florida, italy, jamaica, quebec, nyc

flights into Bing tampa, orlando, jfk, omaha, atlanta, wilmington, eugene, fresno, denver, philadelphia

flights out of Google xna, houston, nashville, newark, gsp, elmira, ilm, detroit, charlotte, austin

flights with Yahoo! virgin, hotel, united, wifi, qatar, kids, pets, ryanair, qantas, dogs

jobs in Bing xenia, jacksonville, qatar, utah, queens, orlando, kansas, killeen, houston, colorado

jobs at Bing home, xerox, penn, yale, google, va, disney, kaiser, walmart, target

jobs with Google relocation, kids, zoology, sports, psychology, kinesiology, housing, animals, math, xbox

jobs for Google felons, kids, veterans, women, zoology, disabled, teens, retirees, xbox, nurses

jobs that pay Yahoo! good, well, cash, daily, less, high, alot, relocation, 100k, big

movies for Bing kids, free, rent, halloween, sale, windows, 2013, 6, ipad, grownups

movies in Google theatres, theaters, greenville, raleigh, xbox, concord, bluffton, birkdale, huntersville, french

movies playint at Bing amc, regal, edwards, harkins, imax, cinema, theaters, carmike, ultrastar, rave

movies coming Yahoo! christmas, soon, up, attractions, back, dvd, valentines, later, home, friday

movies from Google books, 70's, 60's, 80s, june, 70s, spain, july, 50s, amazon

cars for Bing sale, kids, you, rent, less, junk, needy, export, veterans, cash

cars with Yahoo! rims, xm, v8, onstar, class, boys, comedians, kids, rebates, children

cars in Bing gta, lake, barns, india, oklahoma, illinois, virginia, dubai, spanish, uganda

cars under Bing 5000, 4000, 7000, 3000, 8000, 6000, 2000, 500, 9000, 1000

cars that are Google illegal, cheap, quiet, fast, yellow, used, awd, manual, automatic, donated

apartments for Yahoo! rent, sale, queens, you, vacation, cheap, felons, lease, military, seniors

apartments in Bing queens, xenia, jacksonville, quincy, arlington, uptown, irving, austin, dallas, houston

apartments for rent in Google charlotte, raleigh, kannapolis, virginia, paris, xela, florida, england, chicago, indianapolis

apartments on the Google beach, eastside, southside, westside, northside, hudson, green, river, monon, hill

apartments near Yahoo! xavier, lsu, xintiandi, vanderbilt, sdsu, ucf, campus, me, atlanta, bart

flight

job

movie

cars

apartment

Table VII. Top-10 instances discovered by different engines for the same template

Entity Pattern Engine Top-10 instances

Bing houston, atlanta, tampa, indianapolis, zurich, xna, quito, denver, boston, jfk

Google denver, xna, orlando, tampa, edinburgh, florida, knoxville, vegas, jfk, hawaii

Yahoo! xna, zurich, london, usa, manchester, edinburgh, houston, dubai, southampton, dallas

Bing xenia, jacksonville, qatar, utah, queens, orlando, kansas, killeen, houston, colorado

Google virginia, quebec, xi'an, zoology, florida, finance, demand, england, hawaii, georgia

Yahoo! houston, qatar, xenia, australia, singapore, logistics, canada, florida, texas, maine

Bing theaters, quincy, jacksonville, 3d, 2013, jackson, english, portland, queens, omaha

Google theatres, theaters, greenville, raleigh, xbox, concord, bluffton, birkdale, huntersville, french

Yahoo! order, theaters, 2013, 3d, zanesville, 2009, 2011, 2010, production, 2012

Bing 5000, 4000, 7000, 3000, 8000, 6000, 2000, 500, 9000, 1000

Google 5000, 3000, 10000, 8000, 4000, 6000, 7000, 1000, 500, 20000

Yahoo! 1000, $2000, 5000, 15000

Bing quarry, quantico, vanderbilt, osu, iupui, campus, katy, disney, smu, denver

Google quantico, yale, uncc, vcu, arboretum, uncg, me, uncw, 28269, xavier

Yahoo! xavier, lsu, xintiandi, vanderbilt, sdsu, ucf, campus, me, atlanta, bart

car cars under

aparment apartments near

flights fromflight

jobs injob

movie movies in

the productivity but also improve the diversity of discovery results. It may also reduce
the burden (i.e., the need to complete a large number of sampling queries) on individual
engines since the mining task is in a sense distributed among multiple engines.

Discovering from multiple sources may even be necessary when the sources have
different coverage on the subject. For example, consider two bookstores: one that sells
mostly textbooks and the other novels. In this case, the instances (i.e., authors) dis-
covered from the two sources for the template books written by [author] could be very
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Table VIII. Frequent templates when beam size varies (min sup = .01, entity = Amazon, entity = book)

1 5 10 15 20

books for (291) books for (349) books on (515) books for (442) books on (582)

books for young (37) books about (251) books for (368) books on (341) books for (435)

books for boys age (34) books in (218) books about (252) books about (252) books of (263)

books in (10) books with (158) books by (247) books by (247) books by (255)

books with (9) books for young (37) books in (224) books in (247) books about (252)

books on (8) books for boys age (34) books like (166) books with (167) books in (244)

books to (6) books under (31) books with (158) books like (166) books like (166)

books under (6) books for girls age (29) books to (122) books to (122) books with (165)

books by (6) books in spanish for (20) books on sale for (46) books for kids age (42) books to (122)

books for new (20) books for young (37) books for young (37) books of the (55)

books in kindle (19) books for boys age (34) books on sale for (37) books on sale for (46)

books under (31) books for boys age (34) books for kids age (42)

books for girls age (29) books under (31) books for young (37)

books for girls age (29) books for boys age (34)

books ages (25) books under (31)

books for girls age (29)

Beam size

different, since there are not many authors who have written both textbook and novel.
Note that knowing that different sources contain different instances for the same tem-
plate is extremely valuable to Deep2Q (Section 4), which can direct queries asking
for specific instances (e.g., books by certain authors) to the appropriate sources (e.g.,,
bookstores that carry the books by the authors), thereby greatly reducing the query
overhead.

(3) Effects of beam size and min sup threshold: In the third set of experiments, we
further studied the effect of two key parameters in the algorithms on the discovered
templates. First, we examined if the beam size in BEAMSAMPLER affects the quantity
and diversity of templates. Intuitively, a larger beam size should lead to the discovery
of more templates which may also be more diverse. Second, we examined the quantity
and quality of templates when the minimum support threshold, min sup, for frequent
templates in PATMINER varies. Here, we wanted to understand if all the templates
discovered using a certain min sup are meaningful and how to choose a good min sup.
This expands the first set of experiments where we only examined the templates when
min sup was set to .001 (Table V).

Effect of beam size: Table VIII shows the frequent templates discovered by PAT-
MINER for the entity “book”, using the queries obtained by BEAMSAMPLER from Ama-
zon with varied beam sizes: 1, 5, 10, 15, and 20. The minimum support threshold for
the frequent templates, min sup, was set to .01 (i.e., 1%) in this experiment.

From the table, we can make the following observations.

— The algorithm tends to discover more frequent templates when the beam size in-
creases. For example, the number of templates increases from 9 to 11, when the
beam size is increased from 5 to 10. Furthermore, the percentage of increase becomes
smaller with larger beam sizes. For example, there is 22% increase (9 increased to
11) from the beam size of 1 to 5, compared to 6% increase (15 to 16) from the beam
size of 15 to 20.

— Although the min sup (1%) stays the same, the number of queries that support the
templates, i.e., the support count, may increase with a larger beam size. The increase
is most significant on smaller beam sizes, e.g., the support for “books in” is 10 when
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Fig. 7. Distribution of support counts of templates (engine = Bing)

the beam size is 1, and 218 when the beam size is increased to 5. However, the in-
crease is becoming less significant for larger beam sizes. For example, the support
count “books by” stays the same (247) when the beam size is increased from 10 to 15,
and increases only by 8 (to 255) when the beam size is 20.

— Suppose that a template T ′ is considered to be a refinement of another template T , if
T is a prefix of T ′; and T is considered to be a major template, if it is not a refinement
of any other templates. For example, “books for” is a major template in the beam size
of 1, while “books for young” is a refinement to “books for”. We see that the number
of major templates is 7, 5, 9, 10, and 10 respectively for the beam size of 1, 5, 10,
15, and 20. The most significant increase in the number of major templates occurs
when the beam size is increased from 5 to 10, where four more major templates
were discovered, e.g., “books on”. Interestingly, the algorithm discovered all the major
templates that were discovered with the beam size of 1 and 5, when the beam size
was set to 10. Finally, we can see that the number of major templates tends to change
less when the beam size is sufficiently large, e.g., greater than 5.

— There are a significant number of refinement templates for almost every different
beam size. Except for the beam size of 1 (two refinement templates), all other beam
sizes generate either 4 (beam size = 10 and 15) or 6 refinement templates (beam size
= 5 and 20). The percentage of refinement templates ranges from 22% (beam size = 1)
to as high as 54.5% (beam size = 5). For example, there are four refinement templates
for “books for” and two for “books in”, when the beam size is 5.

Similar observations as above can be made for other entities at other search en-
gines. In summary, if we measure the diversity of a set of templates by the number
of major templates among them, then we can see that when beam size is sufficiently
large (e.g., greater than 5), further increasing beam size does not change the diversity
of templates dramatically. On the other hand, larger beam size (e.g., greater than 10)
tends to have lower yield-ratio, hence higher cost of sampling. These suggest that the
best beam size as suggested by yield-ratio (see Figure 6 and discussions in Section 5.1)
typically also leads to the discovery of much diverse templates.

Effect of min sup: Figure 7 shows the distribution of support counts of templates
discovered for the entities flights (Figure 7.a) and apartments (Figure 7.b) at the en-
gine Bing. x-axis represents the distinct support count of templates and y-axis the
number of templates having the support count (i.e., the frequency). Both numbers are
in log-scale (base 10). For example, point (4361, 1) in Figure 7.a corresponds to the
template “flights from” (first one in Table IX). There is only one template with the
same support, hence the frequency 1. Similarly, point (2, 253) indicates that there are
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253 templates with the support count of 2. Note that the minimum support count of a
template is 2 (see Section 3.2, condition 2 in step “discovering frequent patterns”).

We can clearly observe the elbows shapes of point distribution in both figures (simi-
lar observations can also be made for other entities and engines). The left part of the
elbow consists of low-support templates, while the right part high-support ones. The
“joint” of the elbow contains the bordering points.

Thus, one way to determine the min sup threshold for frequent templates is to
choose a point at the joint of the elbow and use its support count as the cut-off value.
For example, we may choose a point at the end of the left part of the elbow whose sup-
port count occurs a sufficiently large number of times, e.g., about 5, and use the support
count as the threshold. For example, this method may pick (10, 5) for the flights tem-
plates and (9, 4) for the apartments template (as shown in the figures). In other words,
the support count threshold for frequent templates is 10 and 9 respectively for the two
entities. Since the total number of queries is 9,086 and 7,647 respectively for flights
and apartments, the above support counts correspond to the support thresholds (i.e., in
fraction) of .11% for flights and .12% for apartments. Similar observations can be made
for other entities and engines. This suggests that .1% may be a reasonable threshold
for our template discovery task.

Furthermore, this threshold (.1%) may prune away a large number of infrequent
templates. For example, it removes about 90% of flight templates (with a support count
of less than 10) and about 95% of apartment templates (with a support count of less
than 9) from further considerations.

From Table IV, we can see that the threshold of .1% will produce frequent templates
in the number of 33 to 103. In some applications, e.g., Deep2Q, it may be too costly
to support a large number of templates, due to the overhead for planning the queries
in the templates. For these applications, larger thresholds may be more desirable. For
example, Table IV shows that the threshold of 1% may reduce the number of templates
to somewhere between 8 to 32; and the threshold of 5% will only produce a very small
number (e.g., no more than 10) of strong templates with very large support.

Finally, to provide an idea of the templates discovered using varied thresholds, Table
IX shows all the templates for flights discovered from Bing with the support threshold
of .1%. The templates are ranked (columns 1 and 5) by their support counts (columns
3 and 7) whose corresponding fractional support values are given in columns 4 and 8.
To ease the comparison, we highlight the last templates with the support of .1%, 1%,
and 5% in bold font.

We can see that the templates capture a great variety of questions users may ask
when searching for flights such as origin, destination, and airfare. They also capture
variations and refinements of questions. The questions, variations, and refinements
may vary greatly in their popularity (i.e., how frequently they are asked); hence their
corresponding templates may have different levels of support.

For example, “flights from” (rank 1, support = 48%) is much more popular than
“flights under” (rank 27, support = 1%). This shows that people search for flights with
specific origin more often than airfare. “flights from” is also much more popular than
its variant “flights out of” (rank 3, support = 6%).

As another example, “flights from lax to” (rank 5, support = 6%) is much more popu-
lar than “flights from seattle to” (rank 50, support = .1%). Presumably more people fly
out of LAX than Seattle. Note that both templates refine “flights from” by specifying
flight origins (i.e., LAX and Seattle).

6. RELATED WORK

We discuss related works from the following perspectives.
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Table IX. Top templates ranked by their support counts (engine = Bing, entity = flights)

Rank Tempate Count Support Rank Tempate Count Support

1 flights from 4361 0.48 30 flights from zurich to 56 0.006

2 flights to 667 0.07 31 flights from xna to 55 0.006

3 flights out of 561 0.06 32 flights in and out of 40 0.004

4 flights into 541 0.06 33 flights from quito to 39 0.004

5 flights from lax to 531 0.06 34 flights raleigh 39 0.004

6 flights from chicago to 525 0.06 35 flights zurich to 30 0.003

7 flights from houston to 505 0.06 36 flights quito 25 0.003

8 flights from atlanta to 478 0.05 37 flights with no 24 0.003

9 flights from tampa to 431 0.05 38 flights quito to 24 0.003

10 flights from new 421 0.05 39 flights from lax to san 22 0.002

11 flights from new york to 417 0.05 40 flights from chicago to new 22 0.002

12 flights boston to 357 0.04 41 flights from houston to san 21 0.002

13 flights in 316 0.03 42 flights raleigh to 20 0.002

14 flights chicago to 305 0.03 43 flights in the 19 0.002

15 flights seattle 293 0.03 44 flights from tampa to san 18 0.002

16 flights seattle to 292 0.03 45 flights from lax to new 17 0.002

17 flights lax to 268 0.03 46 flights from new york to san 17 0.002

18 flights from indianapolis to 257 0.03 47 flights to san 16 0.002

19 flights from kansas city to 235 0.03 48 flights from houston to new 15 0.002

20 flights houston to 200 0.02 49 flights from denver to 13 0.001

21 flights with 191 0.02 50 flights from seattle to 12 0.001

22 flights from us to 176 0.02 51 flights from boston to 11 0.001

23 flights and 173 0.02 52 flights from youngstown 11 0.001

24 flights from fort 159 0.02 53 flights from kansas city to san 10 0.001

25 flights from fort lauderdale to 157 0.02 54 flights new 10 0.001

26 flights jfk to 104 0.01 55 flights from nyc to 10 0.001

27 flights under 101 0.01 56 flights from jfk to 10 0.001

28 flights within 97 0.01 57 flights seattle to san 10 0.001

29 flights ewr to 63 0.007

Query template discovery: As mentioned in Section 1, existing works [Agarwal
et al. 2010; Pandey and Punera 2012] require that search engines provide query logs
for discovering query templates. For example, [Agarwal et al. 2010] generates can-
didate query templates using domain schemas and instances, and discovers popular
templates by matching candidates with queries in a search engine query log. [Pandey
and Punera 2012] develops a generative modeling approach to discovering query tem-
plates from a query log.

Besides search engines, autocompletion features may also be found in command
shells, word processors, and query forms [Nandi and Jagadish 2007]. Tries are com-
monly used to implement query autocompletion. However, we are not aware of any
prior works that utilize tries to store and mine queries sampled from search engines.

[Bar-Yossef and Gurevich 2008] also considers the problem of sampling queries in
search engines via autocompletion. It considers two scenarios: one where the comple-
tions follow a uniform distribution, i.e., all completions have the same importance; and
the other where some suggestions may be more important than others, e.g., judged by
their popularity (i.e., the number of times people have asked the queries).
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It presents a random-walk sampler that obtains random query samples through au-
tocompletion interfaces of engines. It uses AOL query log [Pass et al. 2006] to estimate
the importance of query completions for the popularity-based scenario above, to direct
the process of random walk.

As discussed earlier (Section 1), a key distinction between our work and [Bar-Yossef
and Gurevich 2008] is that, we focus on obtaining popular queries, rather than a ran-
dom sample of queries that include both popular and less popular ones. In other words,
our sampling is biased vs. the random sampling in [Bar-Yossef and Gurevich 2008].

Note that, in addition to the past user queries found in the query logs, search engines
may also use content analysis and dictionaries to help suggest query completions [Bar-
Yossef and Gurevich 2008]. Note also that query autocompletion services typically do
not provide frequency counts on the completed queries. Nevertheless, the fact that a
query is being suggested (indirectly) indicates its popularity or significance.

Beam search is commonly used to reduce the search space in a search problem [Rus-
sell and Norvig 2010]. For example, [Dhamankar et al. 2004] employs a similar beam-
search strategy to help quickly identify complex matches among elements from differ-
ent schemas.

The problem of sequential template mining has been extensively studied in data
mining [Agrawal and Srikant 1995]. A key difference between these works and ours is
that we focus on discovering special templates that have a common first item (i.e., the
entity name). Furthermore, we leverage the fact that the queries are already stored in
a trie and develop a novel trie-based mining algorithm for discovering query templates.

Template-driven data integration: Data integration has been extensively studied
in the database community for over 30 years [Halevy et al. 2006b; Doan et al. 2001;
Madhavan et al. 2005; Doan and Halevy 2005; Doan et al. 2012]. Despite these efforts,
building a data integration system over a large number of sources remains to be an
extremely challenging task that requires a huge amount of upfront efforts and mainte-
nance costs. The flurry of sources now available on the Web further presses the need for
a scalable solution. To address this challenge, recently dataspace [Halevy et al. 2006a;
Salles et al. 2007; Jeffery et al. 2008; Sarma et al. 2008; Chai et al. 2009; Talukdar et al.
2010] has been proposed as a new paradigm for managing a large number of diverse
data sources. It advocates a best-effort pay-as-you-go approach to bootstrapping and
evolving a complex system. An open question then is where should the initial efforts
be focused on and how can the system evolve with continuous efforts? Our research on
Deep2Q contributes to this quest by suggesting a principled template-driven approach
to incrementally constructing and evolving a complex data integration system.

Query templates in Deep2Q: [Nandi and Jagadish 2009] proposes to create views in
a database to capture user interests and permit keyword search over the views instead
of the entire database to improve the search efficiency. Although these views bear some
similarity with the templates in Deep2Q, they are distinct in several key aspects. First,
views in [Nandi and Jagadish 2009] may include all attributes of an entity and thus
are more similar to query forms. In contrast, the templates in Deep2Q rarely have
more than 3 attributes. Second, these views are defined on a single database, while
answers to the queries in the templates come from multiple data sources. Third, users
are expected to search the content of these views using keywords. In other words, views
are not user queries. In contrast, a template in Deep2Q directly captures a set of user
queries.

7. CONCLUSIONS AND FUTURE WORK

We have presented Q2P, a system for discovering query templates from search engines
via their query autocompletion services. Q2P is part of our Deep2Q project that aims
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to develop a hybrid template-driven data integration system for integrating a set of
data sources or search engines on the Deep Web in a domain of interest. The key to
the success of Deep2Q is its ability to capture common user query interests using a
set of query templates. However, discovering such templates from search engines is
challenging since search engines typically do not want to disclose their query logs.

To address this challenge, Q2P leverages query autocompletion services of search
engines to discover query templates. Q2P has two distinct aspects. (1) It uses a trie to
store the completed queries and monitor the progress of continuous query sampling,
and employs a beam-search strategy to focus the expansion of the trie on the most
promising nodes. (2) It takes the advantage of the fact that sample queries are stored
in a trie to efficiently discover query templates using only two traversals of the nodes
in the trie.

Experiments using four search engines (beam size = 10) indicate that Q2P sends
only a moderate number of queries (ranging from 597 to 1135) to the engines, while
being quite productive in obtaining query samples (yielding 4.2 to 8.5 completions per
query). Moreover, a significant number of templates (ranging from 8 to 32 with the
minimum support = 1%) may be discovered from the samples. We also observe that
prepositions are commonly used to introduce the parameters (e.g., “jobs in Chicago”
and “flights from LA”) in the templates.

Besides further evaluation of Q2P on additional engines and domains, we are ex-
tending it to learn query templates with multiple parameters. A possible solution is to
combine and generalize the discovered single-parameter templates. For example, from
“flights from Chicago”, “flights from Houston”, and many other similar queries, Q2P
may learn a template T1: flights from [city]. Furthermore, assuming that “Chicago” is a
popular origin, there may be many queries like “flights from Chicago to Hawaii” and
“flights from Chicago to New York”. From this, we may discover another template T2:
“flights from Chicago to [city]”. Then, by combining T1 and T2, we may infer a new
two-parameter template: flights from [city] to [city].

We are also integrating Q2P into Deep2Q to evaluate the effectiveness of the dis-
covered templates in capturing user query interests, e.g., how frequent each template
is used by Deep2Q users, and how many user queries are not captured by the tem-
plates. An interesting direction is to start Deep2Q with the templates learned by Q2P,
monitor user interaction with Deep2Q, record user queries, and then gradually add
new templates into Deep2Q to support queries that are not captured by the existing
templates.
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