
Recognizing Text In Historical Maps Using Maps
From Multiple Time Periods

Ronald Yu
Department of Computer Science
University of Southern California

Los Angeles, CA
Email: ronaldyu@usc.edu

Zexuan Luo
Department of Computer Science
University of Southern California

Los Angeles, CA
Email: zexuanlu@usc.edu

Yao-Yi Chiang
Spatial Sciences Insitute

University of Southern California
Los Angeles, CA

Email: yaoyic@usc.edu

Abstract—Recognizing text in historical maps is inherently
difficult due to input challenges such as artifacts interfering with
the text or an unpredictable rotation and orientation of the text.
This paper discusses our algorithm that overcomes the limitations
of the input by adding extra input consisting of multiple layers
of images of the same map area but across different time periods
and names of geographic entities in the United Kingdom collected
from OpenStreetMap. Using our algorithm, compared to Strabo,
a state-of-the-art text recognition software on maps, we obtain a
153% improvement in precision, a 31% improvement in recall,
and a 75% improvement in F-score for word recognition on maps.

I. INTRODUCTION

Recognizing text from historical maps is challenging for
several reasons. First, text labels may be surrounded by noise
and may intersect other text labels or non-textual artifacts
on the maps such as trees or rivers. For example, in Fig. 1
the text label “St. Thomas’s Church” intersects with dotted
lines (roads) and is surrounded by other artifacts that could be
misidentified as text. Second, text labels on a map are often at
an angle because they curve with geographic features. In Fig.
1 the label “RIVER” is not oriented horizontally and bends
significantly, making it difficult to differentiate the characters
and the surrounding non-text objects. These are challenges
that a traditional text recognition algorithms and software tools
(e.g., Abbyy, FineReader, and TesseractOCR) do not need to
consider [1]–[3]. Additionally, many historical maps are low-
quality images where the text is blurred and squeezed together
so that even a human would have a hard time recognizing it. In
[4], Ye and Doermann provide a survey on text detection from
scenic images (e.g., restaurant signs in Google Street View).
This type of work similarly presents a problem of extracting
text from a noisy background and an unpredictable orientation,
but does not deal with noise directly intersecting with the text,
which is a common occurrence in historical maps.

In [2], we built a system called Strabo (Section 3A) that
handles these challenges to recognize text on historical maps.
However, the accuracy of the Strabo can be limited by the
graphical and content quality of the input maps. In a bench-
mark experiment on text recognition from a variety of scanned
historical maps [3], Strabo obtained 48% precision and 84%
recall at the character level for map labels that were not
surrounded by much noise and were in the horizontal direction.

For map labels that were surrounded by a large amount of
noise or curved (e.g. in Fig. 1), Strabo obtained a recognition
result of 32% precision and 43% recall at the character level.

Fig. 1. On the figure on the left, the input data is extremely noisy as several
artifacts intersect with the text label. Because of this, our previous text-
recognition algorithm Strabo (Section 3A) has incorrectly split “St. Thomas’s
Church” into two results: “Thomas” and “t Cltureh”. On the figure on the
right, the word “RIVER” is curved and in a diagonal position, so Strabo
incorrectly recognizes the word as “FIVE”.

We propose an algorithm that recognizes text in noisy
historical maps by using multiple images from the same
geographical location but different time periods. The idea is
that the noise on the maps from the same area but different
time periods may affect different parts of a text label in two
different maps. Hence, we can combine imperfect information
from each map to recover the original text of the map labels.
For example, in one map, there may be a road that intersects
the beginning of a text label and in another map, there may be
a group of trees that intersects the end of the text. Each map
is missing some information, but combined they have enough
information to recover the whole word.

In addition, our approach uses a dictionary of geographic
names built from OpenStreetMap for correcting the recognized
text. Our approach combines the information obtained from
each of the maps along with the dictionary to generate an
accurate final recognition result of the map text.

The rest of this paper proceeds as follows: In section 2, we
consider related work. In section 3, we discuss our methods.
In section 4, we present our experiments and results. In section
5, we conclude the paper and discuss future work.

II. RELATED WORK

In [5], Hong and Hull cluster similar-looking images of
words and combine the results of comparing each member
of the cluster to a dictionary. This algorithm assumes that the



Fig. 2. An overview of our algorithm. We first run the maps through a text recognition algorithm such as Strabo (Section 3A) and refine these results by
grouping certain strings into compound words (Section 3B). We then merge these results together (Section 3C) and combine it with a geodictionary (Section
3d) to generate the final output.

whole document uses the same font style and size and that
multiple instances of the same word look similar, which is
not practical when processing historical maps because multiple
instances of the same word on a map can be rotated in any
direction and represented in different fonts and sizes.

In [6], Lund and Ringger run multiple Optical Character
Recognition (OCR) engines on the same word image and
combine the output from the various OCR engines. This
approach is not sufficient for reading text in historical maps.
For example, if a line on the map intersects a character ’l’, then
it may look like a ’t’ and all the OCR engines would make the
same mistake. In contrast, if the text label with the character
’l’ appears in other maps of the same area, our approach can
use this mutual information to correctly recognize the label.

In [7], Lund et. al use multiple binarization thresholds to
create several images of the same word, run each of them
through an OCR engine, and combine the multiple OCR
results to generate a single output. This algorithm is limited
if the input from a map is so poor that even using the optimal
binarization levels cannot yield a remotely accurate output.

Others have approached the problem of recognizing text in
maps by using a geographical dictionary of known words. In
[8], Weinman uses a gazetteer of geographic entities and their
locations to create a probabilistic model of possible correct
words for each text label. For each map area, his algorithm
queries a gazetteer for Civil and Populated Places entities
in the same local geographical area as the map. However,
the paper processes small-scale maps, which cover a large
area and are less detailed. Since geographic entities in small-
scale maps can usually be found in a gazetteer, this allows
them to make spatial queries to the gazetteer. Our method
can handle large-scale maps, which cover a small area but
have more detail (e.g. text labels of windmills or nurseries).
If we only query a gazetteer for entities within the same area
as the map being processed, the query result would miss the
majority of the text labels that are not place names, such as
“Sewage Works” Additionally, most of the gazetteers are based
on current geographical entities. Because of this, a geographic
entity (e.g., a street) in a historical geographical area may not
necessarily be in that same area today and therefore may not

appear in the gazetteers. To solve this problem, instead of
querying for entities only within the map’s local geographical
area, we query a dictionary of two-million entities from all
over the UK.

One problem with using such a dictionary with a large
number of entries is that a dictionary query may yield false-
positives. A simple dictionary query cannot use the geographi-
cal location or any other method to resolve ties among several
similar dictionary words and to distinguish the correct dictio-
nary word from false-positives. In Fig. 1, Strabo incorrectly
recognizes “Church” as “t Cltureh”. “Cltureh” is similar to
several dictionary words including “Church” and “Culture”. If
we only use the gazetteer on a single map layer, we do not
have enough information to select the correct dictionary word.
However, because we use multiple maps as inputs, we are able
to resolve dictionary ties by comparing dictionary words to the
recognized text on all the map layers being processed.

III. METHODS

Our algorithm takes results from text recognition software
for several maps covering the same area but from different
time periods as input and outputs the text of what is on the
maps. For a map area, we call each different map image from a
different period a map layer. We first run Strabo—the system
we developed in our previous work—on each of the maps
to generate a Strabo result for each map label on each of
the map layer images. We then run our algorithm using the
Strabo results as input (Section 3A). Our algorithm contains
three main stages (Sections 3B – 3D): grouping nearby strings
in a map layer into compound words, matching strings that
are likely to represent the same entity in different map layers,
and finally comparing the matched results to the dictionary to
generate the final output. A flowchart showing the stages of
our algorithm can be seen in Fig. 2.

A. Strabo

In our previous work, we developed a system called Strabo
to recognize text labels in map images [2]. When certain
conditions are satisfied, Strabo groups nearby characters into
strings. These conditions are based on cartographic labeling
principles such as that all the characters in a map label have



a similar height and width and that two characters in the
same text label are usually closer together than two characters
from different labels [2]. Strabo then detects the text label
orientation and rotates every label to the horizontal direction
[2]. Finally, Strabo uses an OCR package to recognize the
text. For each map label detected on the map image, Strabo
outputs the detected text of the label and a bounding box of the
location of the label. Examples of what the output of Strabo
looks like can be seen in any of the figures in this paper.
In this paper, we use the output from Strabo as the initial
recognition results and then use these results from multiple
maps to improve the overall recognition accuracy.

B. Grouping Strings Into Compound Words

One challenge in text recognition from maps is that recogni-
tion algorithms commonly split what should be a single string
into separate strings when the map label covers two or more
lines on the map or when the spacing between two words is
exceptionally large. For example, if a map contains the entity
“St. Thomas’s Church” (Fig. 1), the label may be incorrectly
separated into two independent misspelled strings “Thomas”
and “t Cltureh”. This is a loss of potentially useful information,
so our algorithm first groups text in the initial recognition
results from the same map image by concatenating them into
a compound string.

The first step in our grouping process exploits several prop-
erties of compound strings. First, if a compound string is split
into two strings in the initial recognition results, those strings
are likely to be separated by a small geographic distance
both in the x and y directions. Second, if two strings indeed
represent substrings of the same map label, the characters in
the label should have a similar size. If the characters are of
a similar size, the bounding boxes of the two results should
have a similar height. The two strings do not necessarily need
to have the same width since the width is also affected by the
number of characters in the string.

To make use of these properties, our process takes a string in
the initial recognition results, and based on that string, builds
a chain of strings that are located spatially near each other on
the map. The algorithm does so by considering the bounding
box of each of the strings in the initial recognition results
and appending them to the end of the chain if the following
conditions are satisfied:

dx < Tx ∗ wres (1)
dy < Ty ∗ hres (2)

1

Tratio
<

hlink

hres
< Tratio (3)

where res is the bounding box of a string in the the initial
recognition results, link is the bounding box of the final link
in the chain, w and h are the width and height of the bounding
box, d is the Euclidean distance on the map between res and
link, and Tx, Ty, and Tratio are tunable thresholds.

In Fig. 1, the string “Thomas” is taken as the base of a
chain. Since “Thomas” has a similar x-value and y-value to
the string “t Cltureh”, “t Cltureh” is appended to “Thomas”.

Moreover, since the string“nun” is directly below “t Cltureh”
and they have similar x-values, the algorithm appends “nun”
to the end of the chain comprised of the other two strings.
Next, although “pllln” is close to the other three entities, its
height is much smaller than the height of of “nun”. Because of
this, “pllln” is not appended to the chain, and our final chain
from this step is “Thomas t Cltureh nun”.

As seen in our example, this process may incorrectly append
unrelated strings to the end of a chain. In order to solve this
problem, we segment the chain into smaller chains of words,
which we call segments, such that each of the smaller chains
is similar to an entity in the dictionary. A queried word is
considered similar to a dictionary word if the Levenshtein Edit
Distance between the words dLED satisfies:

dLED ≤ max(2,min(5, L)− 2) (4)

where L is the number of characters in the query word.
If a string is not similar to any entries in the dictionary, it

most likely does not represent any actual entity and is instead
more likely to be two unrelated nearby strings and should not
be grouped together into a compound string.

To segment the chain, we initially treat the chain of strings
as a single compound word and check if it is similar to any
entry in the dictionary. If the compound string is similar to
any set of entities in the dictionary, then the chain is accepted
as a compound string. We can now process this compound
string in the next stage to determine which dictionary word
the map label actually represents. If no similar string exists in
the dictionary, the string at the end of the chain is discarded.
We continue to compare the remaining part of the chain to
the dictionary and discard the end until the chain matches an
entry in the dictionary.

In the case of Fig. 1, “Thomas t Ctlureh nun” is not similar
to any string in the dictionary, so “nun” is discarded from the
end of the chain, and the process repeats on the remaining
chain. “Thomas t Ctlureh” is similar to several dictionary
strings such as “Thomas Church” and “Thomas Culture”, so
it is accepted as a valid compound string and processed in the
next stage of the algorithm to determine which dictionary word
its map label most likely represents. This process is repeated
on the discarded words until the original chain of words is
completely segmented into dictionary words. Since “nun” is
in the dictionary, it is kept as a valid string, and the final output
of this example is two strings: “Thomas t Ctlureh” and “nun”.

C. Matching Strings Across Different Layers

This step groups labels from different map layers that could
represent the same entity in order to use the information from
each of these layers in a later step. Given a compound word
from a single map layer, we search the compound words from
other map layers to find words that are most likely to express
the same geographical entity. The process is based on two
metrics: the geographical distance and string similarity.

For two strings from different layer to be considered similar,
they first must be geographically close, meaning that their
physical distance in meters should be less than a tunable



parameter Tgeo. We consider geographic distance because map
entities usually do not physically move very far away over
time, so we expect a single entity to remain around the same
physical spot on maps from all time periods.

However, Tgeo is usually large enough so that each com-
pound word will usually have multiple geographically close
strings in other map layers, so we filter the nearby compound
words using the string similarity because having a high sim-
ilarity score indicates that two strings are likely expressing
the same thing. If no string has a similarity score higher
than a tuneable threshold Tsim, we conclude that there are no
meaningful matches and ignore the strings.

In this step, string similarity is determined by our implemen-
tation of the Needleman-Wunsch algorithm, which we have
enhanced to account for common OCR mistakes. For example,
text-recognition algorithms commonly misrecognize an ‘n’ as
a ‘u’, so we lower the scoring penalty incurred when an ‘n’
in the initial recognition results is replaced with a ‘u’ in a
dictionary word and vice versa. These enhancements make
our implementation of Needleman-Wunsch more accurate but
slow down the comparison process because we check for many
different kinds of common OCR mistakes. To overcome this
challenge, we first use Elasticsearch to index and generate a
list of similar strings from a dictionary of two-million entities.
Then we use the slower but more accurate Needleman-Wunsch
algorithm to identify similar compound words.

In the example from Fig. 3 and Fig. 4, there are several
entities on the 1935 layer that are geographically nearby to
the map label “homa urch” from the 1900 layer. Of these
geographically similar strings, we group “homa urch” with
the string from the 1935 map layer that has the highest string
similarity score, which in this case is “Thomas t Cltureh”.

Fig. 3. Map Layer from 1900. The initial recognition result of “St. Thomas
Church” is “homa urch”.

Fig. 4. Map Layer from 1935. The initial recognition result of “St. Thomas
Church” is “Thomas t Cltureh”.

D. Using the Dictionary to Generate Final Output

After we group the compound words from different layers,
for each group we select the entity in the dictionary that is
most likely to represent the actual text in the map. Again,
we store the dictionary using Elasticsearch, a highly indexed
database that can process search queries quickly. Using the

Levenshtein-Edit Distance to measure similarity, an Elastic-
search query can return a set of several hundred similar strings
immediately. We first query the database for each compound
word in the group to immediately return a few hundred
candidates out of the more than two-million database entries.
We then narrow down the candidates using the slower but
more accurate Needleman-Wunsch algorithm. In the example
group in Fig. 3 and 4, we query “homa urch” and “Thomas t
Cltureh” to the dictionary, yielding two sets of several hundred
dictionary candidates.

We now merge the sets of candidates into a smaller set of
candidates such that each element of the final resulting set
is similar to all of the compound words in the group. Since
we only need to make several hundred comparisons at this
stage, we now run the Needleman-Wunsch algorithm, which
is slower but more accurate, to select the correct candidate. We
compare each set of dictionary candidates to its corresponding
compound word and assign a similarity score. We then merge
the set into a single list by taking the union and then sorting
the list by similarity score. If a dictionary candidate appears in
the sets of more than one compound word, the similarity score
of the candidate in the final merged set is the sum of the scores
that the candidate receives in each of the individual candidate
sets of the compound word group. We use this summation
method to favor words that appear in multiple compound
words, which usually indicates that a candidate is similar to
multiple map layers and is likely to be the correct result.

In our example from Fig. 3, “homa urch” has a high
string similarity with “Rhema Church”, so “Rhema Church”
is included in the final set (Table 1). “Thomas t Cltureh”
has a high similarity with “St Thomas Church”, so “St
Thomas Church” is included in the final set. “Thomas Court”
is moderately similar to both “homa urch” and “Thomas t
Cltureh”, so “Thomas Court” appears on the list. Table 1 shows
a sample of how some of the top scores in the merged set
are generated. The first column is the dictionary candidate,
the second column is the candidate’s normalized Needleman-
Wunsch similarity score with “homa urch”, the third column
is the candidate’s normalized similarity score with “Thomas t
Cltureh”, and the fourth column is the candidate’s final score,
which is the summation of the second and third column. A
“N/A” in an entry indicates that the dictionary candidate was
not in the original candidate set of the compound word group
corresponding to that column.

TABLE I
MERGING PROCESS FOR “HOMA URCH” AND “THOMAS T CLTUREH”

Dictionary Candidate Score with Score with Final Score
“homa urch” “Thomas t

Cltureh”
Thomas Court 0.25 0.467 0.717
Thomas Close 0.25 0.444 0.694
Rhema Church 0.65 N/A 0.65
Thomas Greatorex N/A 0.622 0.622
St. Thomas Church N/A 0.611 0.611

We now truncate the set so that only the top 20 results



remain. We do this because we have empirically observed
that the correct result never falls outside of the top 20. Using
this truncation speeds up the algorithm as there are less
Needleman-Wunsch comparisons to perform.

We then compare the string from all layers to each of
the words in this final set to compute the final score for
each candidate. Each element in the final set is assigned
its final score based on the summation of its Needleman-
Wunsch similarity score to the compound words from each
of the layers. We do this second round of comparison in
case a dictionary candidate is similar a compound word with
respect to the Needleman-Wunsch algorithm, but is not close
in Levenshtein Edit Distance and therefore does not appear
in the compound word group. This step essentially fills in the
“N/A” entries in Table 1. In Table 2, we show Table 1 again but
this time with the “N/A” entries replaced with the appropriate
values. The updated entries in Table 2 are in bold.

TABLE II
SECOND PASS OF NEEDLEMAN-WUNSCH COMPARISONS

Dictionary Candidate Score with Score with Final Score
“homa urch” “Thomas t

Cltureh”
Thomas Court 0.25 0.467 0.717
Thomas Cook 0.35 0.444 0.694
Rhema Church 0.65 0.506 1.156
Thomas Greatorex 0.356 0.622 0.978
St. Thomas Church 0.667 0.611 1.278

Table 2 shows how “St. Thomas Church” is correctly
selected as the final output because of its high similarity
to both of the compound words. This scoring system favors
dictionary candidates that are similar to the compound words
from multiple layers. Since the correct dictionary word is
usually similar to all layers, there is a high chance that our
algorithm will select the correct word.

The actual text on the map is “St. Thomas’s Church”,
which is not in the dictionary, so instead we output an
almost equivalent string in “St. Thomas Church”. In this
example, our algorithm took incomplete input from two layers
and combined the partial information from each layer and a
dictionary to output the correct text on the map label.

IV. EXPERIMENTS

We tested the performance of our algorithm on the Histor-
ical Ordinance Survey Maps of UK. Each map area covered
1,000x1,000 meters of the British National Grid and each
image was 1512x1512 pixels. We tested on nine map areas
with 440 map labels. For map areas 1 to 4, we were able
to obtain map layers from the years 1905, 1920, and 1935 as
input. For map areas 5 to 9, we were able to obtain map layers
from the years 1900, 1920, 1935, and 1945 as input.

We first ran Strabo on all the maps and calculated the
precision, recall, and f-score at the word-by-word level for
the earliest map layer of each map area (either 1900 or 1905).

We then ran our algorithm on each map area using the
following parameters: Tx=2, Ty=1.5, Tratio=1.8, Tgeo=500, and

Tsim=0.57. We calculated precision and recall based on the
earliest map layer of each map area.

We compared the precision and recall at the word-by-
word level from running Strabo on a single map and from
running our algorithm on multiple map layers while using
the dictionary as input. We display the results in Table 3.
The first column is the ID number of the map area. The
second, third, and fourth column are the precision, recall, and
F-score, respectively when our algorithm processed multiple
layers. The fifth, sixth, and seventh column are the precision,
recall, and F-score, respectively when only Strabo was used
to process layer 1905 for map areas 1-4 and layer 1900 for
map areas 5 to 9. The eighth column is the number of total
words present on the map.

TABLE III
COMPARING THE PRECISION AND RECALL AT THE WORD-BY-WORD LEVEL

OF WHEN STRABO IS RUN ON A SINGLE MAP LAYER AND WHEN OUR
ALGORITHM IS RUN ON MULTIPLE LAYERS

ID Prec. Recall F-Score Strabo Strabo Strabo GT
Prec. Recall F-Score

1 53.19% 29.76% 38.16% 26.76% 22.61% 24.51% 84
2 66.67% 29.85% 41.23% 28.84% 22.38% 25.20% 67
3 72.72% 44.44% 55.17% 41.67% 37.03% 39.21% 54
4 68.18% 38.46% 49.17% 41.17% 35.89% 38.34% 39
5 60.00% 37.50% 46.15% 14.51% 22.50% 17.64% 40
6. 84.00% 43.75% 57.53% 25.00% 18.75% 21.43% 48
7 30.76% 33.33% 31.99% 8.53% 29.17% 13.20% 24
8 44.00% 25.58% 32.35% 24.07% 30.23% 26.80% 43
9 62.50% 24.39% 35.08% 18.60% 19.51% 19.04% 41
AVG 59.84% 33.86% 43.24% 23.65% 25.91% 24.72% 48

We can see how our algorithm compared to running Strabo
and dictionary post-processing on a single map. On average,
we obtained a 153% increase in precision, a 31% percent
increase in recall, and a 75 percent increase in F-score.

In cases such as the example used in Fig. 1, our algorithm
was able to recover the map label’s actual text even when
noise made the text impossible to recognize accurately on each
individual layer. While the noisy input would have caused
Strabo to incorrectly recognize the text on all layers, our
algorithm combined the partial information from each layer
and correctly recognized the label for all layers.

Fig. 5. The map label on the left is from the 1900 layer. There are two
lines intersecting the beginning of the word “Aldwarke”, so only the end of
the word is recognized as “dwarhe”. The map label on the right is from the
1945 layer. There is little surrounding noise image, so the label is correctly
recognized as “Aldwarke”.

In other cases, the input was noisy on several but not all
layers, so although Strabo obtained an inaccurate result on the
layers where noise interfered with the text, Strabo correctly
recognized the text label for the layer without noise. With the
help of the correctly recognized layer, our algorithm recovered
the original text on the map label successfully. In Fig. 5, in the
1900 layer on the left, a line intersected with the ‘A’ and ‘l’ in



“Aldwarke”, causing Strabo to only recognize the end of the
string as “dwarhe”. However, in the 1945 layer on the right,
there were no noisy artifacts intersecting with the label, so
Strabo successfully recognized the label as “Aldwarke”. Our
algorithm combined these results and determined that the map
label on the 1900 layer said “Aldwarke”.

Our algorithm was also more robust to noise. Basic dictio-
nary post-processing on Strabo was able to filter out some of
the noise by putting a minimum similarity threshold Tsim that a
dictionary word must have to the Strabo result. However, Tsim

was fairly low, so many noise inputs were still recognized
as dictionary words. Because we expected the Strabo result
on at least one layer to be fairly similar to the correct
dictionary word, we were able to use a higher Tsim, allowing
our algorithm to better filter out noise.

The remainder of our discussion will focus on common
errors in our algorithm.

A. Ground Truth Not In Dictionary

When the map’s ground truth was not in our dictionary, we
always obtained an incorrect result. This error comprised of
up to 27 percent of our recall errors on certain map areas.
For example, in Fig. 6, “Garrowtree Farm” was recognized
by Strabo as “Garrmcfree Farm” in the 1900 layer and as
“Garrowtree Farm” in the 1920 layer. Since the Strabo result
was similar to the ground truth in the 1900 layer and was a
correct in the 1935 layer, our algorithm should have output
“Garrowtree Farm”. However, because “Garrowtree Farm”
was not in our dictionary, our algorithm did not consider
“Garrowtree Farm” as a dictionary candidate, and instead
wrongly output the dictionary candidate “Sparrow Lee Farm”.
One potential solution is to use the dictionary as a suggestion
and still output a text recognition result that is not in the
dictionary if the text recognition confidence is high enough.

Fig. 6. In left-hand image, Strabo incorrectly labeled “Garrowtree Farm” as
“Garrmcfree Farm” in the 1900 layer.In the right-hand image, Strabo made an
exact match and correctly recognized “Garrowtree Farm” in the 1920 layer.

B. Incorrectly Identifying Noise As Text

Another issue that lowered precision was that Strabo would
recognize noisy, non-textual artifacts as text. This comprised
of up to 32 percent of the precision error for certain map
areas. In map images such as Fig. 7, there were many trees
that were arranged in a way that resembled characters. Thus,
Strabo frequently recognized these trees as text. Although our
algorithm was more robust to noise than Strabo and ignored
most noise inputs they were not similar to any entries in
the dictionary database, sometimes all layers would detect
noise that was similar to a dictionary entry, so our algorithm
recognized the noise as text instead of ignoring it. Generally,

Strabo results that were actually just trees tended to follow
certain patterns such as consisting mostly of ’m’ and ’n’ or
of taller letters like ’l’ and ’k’, so we may consider taking
advantage of these properties in the future in order to solve
this problem.

Fig. 7. In rural areas, Strabo incorrectly recognized many trees and non-
textual artifacts as text, which lowered the precision of our algorithm.

V. DISCUSSION AND FUTURE WORK

Our proposed algorithm in this paper makes strides in
extracting text from historical maps by using additional input
in the form of multiple map layers of the same area but
from different time periods and a large dictionary database
of geographical entities in the UK. Future works may include
solving the common errors described in Section 4. One area
of research may be exploiting the properties of noise data
described in section 4 and using a machine learning algorithm
such as Support Vector Machines to correctly ignore noise
inputs. Moreover, most of our thresholds used in Sections 3
are currently empirically determined. In the future, we may
develop a method to automatically determine these thresholds.

ACKNOWLEDGMENT

The authors would like to thank Dr. Craig A. Knoblock,
Narges Honarvar Nazari, and Tianxiang Tan for their contri-
butions to this project.

REFERENCES

[1] Y.-Y. Chiang, S. Leyk, and C. A. Knoblock, “A survey of digital map
processing techniques,” ACM Comput. Surv., vol. 47, no. 1, pp. 1:1–1:44,
2014.

[2] Y.-Y. Chiang and C. A. Knoblock, “Recognizing text in raster maps,”
Geoinformatica, vol. 19, no. 1, pp. 1–27, 2015.

[3] Y.-Y. Chiang, S. Leyk, N. Nazari, S. Moghaddam, and T. T. T., “Assessing
impact of graphical quality on automatic text recognition in digital maps,”
Computers & Geosciences, In Revision, 2016.

[4] Q. Ye and D. Doermann, “Text detection and recognition in imagery: A
survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 37, no. 7, pp. 1480–1500, 2015.

[5] T. Hong and J. J. Hull, “Improving ocr performance with word image
equivalence,” in Fourth Symposium on Document Analysis and Informa-
tion Retrieval, (Las Vegas, NV, USA), pp. 197–199, 1995.

[6] W. B. Lund and E. K. Ringger, “Improving optical character recognition
through efficient multiple system alignment,” in Proceedings of the 9th
ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 231–240, 2009.

[7] W. B. Lund, D. J. Kennard, and E. K. Ringger, “Combining multiple
thresholding binarization values to improve ocr output,” Proc. SPIE,
vol. 8658, pp. 86580R–86580R–11, 2013.

[8] J. Weinman, “Toponym recognition in historical maps by gazetteer
alignment,” in Proceedings of the 2013 12th International Conference
on Document Analysis and Recognition, pp. 1044–1048, 2013.


	Introduction
	Related Work
	Methods
	Strabo
	Grouping Strings Into Compound Words
	Matching Strings Across Different Layers
	Using the Dictionary to Generate Final Output

	Experiments
	Ground Truth Not In Dictionary
	Incorrectly Identifying Noise As Text

	Discussion and Future Work
	References

